• Title/Summary/Keyword: Mechanical Vibrations

검색결과 598건 처리시간 0.027초

An Experimental Study of Accelerating Phase Change Heat Transfer

  • Oh, Yool-Kwon;Park, Seul-Hyun;Cha, Kyung-Ok
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1882-1891
    • /
    • 2001
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). Furthermore, the present study considered constant heat flux boundary conditions unlike many of the previous researches adopted constant wall temperature conditions. Therefore, in the present study, modified dimensionless parameters such as Ste* and Ra* were used. Also, general relationships between melting with ultrasonic vibrations and melting without ultrasonic vibrations were established during the melting of PCM. Experimental observations show that the effect of ultrasonic vibrations on heat transfer is very important throughout the melting process. The results of the present study reveal that ultrasonic vibrations accompany the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. They enhance the melting process as much as 2.5 tildes, compared with the result of natural melting. Also, energy can be saved by applying ultrasonic vibrations to the natural melting. In addition, various time-wise dimensionless numbers provide conclusive evidence of the important role of ultrasonic vibrations on the melting phenomena.

  • PDF

Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers

  • Lee, Minhyung;Lee, Sung-Yeoul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1628-1637
    • /
    • 2003
  • The vortex-induced vibrations of a circular cylinder at low Reynolds (Re) numbers are simulated by applying a method of the two-dimensional computational fluid dynamics coupled with the structural dynamics based on the multi-physics. The fluid solver is first tested on the case of a fixed cylinder at Re$\leq$160, and shows a good agreement with the previous high-resolution numerical results. The present study then reports on the detailed findings concerning the vibrations of an elastic cylinder with two degrees of translational freedom for a number of cases in which Re is fixed at 200, a reduced damping parameter Sg=0.01, 0.1, 1.0, 10.0 and the mass ratio M$\^$*/ = 1, 10.

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

Dynamics of electric system for electromechanical integrated toroidal drive under mechanical disturbance

  • Hao, Xiuhong;Xu, Lizhong
    • Interaction and multiscale mechanics
    • /
    • 제2권2호
    • /
    • pp.189-207
    • /
    • 2009
  • Dynamics of the electric system for the toroidal drive under mechanical disturbance is presented. Using the method of perturbation, free vibrations of the electric system under mechanical disturbance are studied. The forced responses of the electric system to voltage excitation under mechanical disturbance are also presented. We show that as the time grows, the resonance vibration caused by voltage excitation still exists and the vibrations caused by mechanical disturbance are enlarged. The coupled resonance vibration caused by mechanical disturbance and voltage excitation is discussed. The conditions of the occurrence of coupled resonance are studied.

광디스크 드라이브의 최근 동향과 기계적 진동의 영향 (MECHANICAL VIBRATIONS IN OPTICLA DISK DRIVES)

  • 이승엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.218-226
    • /
    • 1998
  • Recent trends and the effect of mechanical vibrations in optical disk drives are reviewed in this paper. The Nation from CD drives to high density DVD drives and the development of writable optical disk drives require tighter mechanical tolerance. The demand for faster access time and higher data transfer rate also leads to critical mechanical problems to limit the tracking and focusing servo performance. The current mechanical issues to limit the performance of the drives and various technologies to overcome the mechanical problems are introduced. Vibrations of disk-spindle system, actuator and suspension designs of the optical pick-up, and general mechanical designs for the fast and stable access mechanism are considered.

  • PDF

Non-contact monitoring of 3-dimensional vibrations of bodies using a neural network

  • Ha, Sung Chul;Cho, Gyeong Rae;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1011-1016
    • /
    • 2015
  • Gas piping systems in power plants and factories are always influenced by the mechanical vibrations of rotational machines such as pumps, blowers, and compressors. Unusual vibrations in a gas piping system influence possible leakages of liquids or gases, which can lead to large explosive accidents. Real-time measurements of unusual vibrations in piping systems in situ prohibit them from being possible leakages owing to the repeated fatigue of vibrations. In this paper, a non-contact 3-dimensional measurement system that can detect the vibrations of a solid body and monitor its vibrational modes is introduced. To detect the displacements of a body, a stereoscopic camera system is used, through which the major vibration types of solid bodies (such as X-axis-major, Y-axis-major, and Z-axis-major vibrations) can be monitored. In order to judge the vibration types, an artificial neural network is used. The measurement system consists of a host computer, stereoscopic camera system (two-camera system, high-speed high-resolution camera), and a measurement target. Through practical application on a flat plate, the measured data from the non-contact measurement system showed good agreement with those from the original vibration mode produced by an accelerator.

에어-드롭 해머와 카운터블로 해머 프레스 단조공정의 기계진동 비교해석 (Comparative Analysis of Mechanical Vibrations of an Air-Drop Hammer and a Counterblow Hammer in Forging Process)

  • 김수태;최영휴;주경진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.10-18
    • /
    • 2022
  • Air-drop hammer press and counterblow hammer press are widely used power-drop forging hammersemploying different forging blow mechanisms. It is important and necessary to analyze mechanical vibrations of these two different hammers in their forging processes in order to develop high performance forging hammers. In this study, these two forging hammers were mathematically modelled as mass-spring-damper systems. For these two different types of forging hammers, the forging efficiency and mechanical vibrations due to hammer forging blow were theoretically analyzed and compared. The force transmitted to the ground was also determined and compared. Especially, effects of mass ratio and restitution coefficient on forging efficiency were investigated.

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

디스플레이 기기용 강화유리 절단기의 안정화 설계 (Stability Design of a Laser Cutter for the Strengthened Glass)

  • 노승훈;박유라;류영찬;김영조;이태훈
    • 반도체디스플레이기술학회지
    • /
    • 제14권1호
    • /
    • pp.19-25
    • /
    • 2015
  • Strengthened glass is widely used in the display industry for the smart phone and the tablet PC's, the market of which shows steady growth. The strengthened glass is prone to the fracture due to the machined surface defects such as crack and notch. The surface defects are caused mostly by the vibrations of the laser cutter. In this study, the vibrations of the laser cutter were investigated through the frequency response experiment and the computer simulation. The main reasons of the structural vibrations were analyzed, and further the design alterations were deduced and applied to the machine to check the effects of those alterations and to eventually improve the structural stability. The result shows that simple design modifications without major structural change can substantially suppress the vibrations, and improve the quality of the machined surface.

와류기인진동을 이용한 신재생에너지 발전에서 유체력 추정연구 (Estimation of Fluid Force for Renewable Energy Generation Using Vortex-induced Vibrations)

  • 박홍래
    • 신재생에너지
    • /
    • 제19권2호
    • /
    • pp.23-30
    • /
    • 2023
  • Vortex-induced vibrations are a type of flow-induced vibrations caused by alternating lift forces. With increasing demand for renewable energy, the application of vortex-induced vibrations to renewable energy has been widely studied. Vortex-induced vibrations for aquatic clean energy (VIVACE) converter is a renewable energy device that generates electricity from rivers or oceans using vortex-induced vibrations. To increase the design life and power harnessing capacity of the VIVACE converter, the estimation of fluid forces due to vortex-induced vibrations is essential. Herein, vortex-induced vibrations were experimentally tested, and their amplitude and frequency response were measured. The amplitude results showed four different branches: initial branch, upper branch, lower branch, and desynchronization range. According to the fluid force coefficient results, the maximum lift coefficient occurred at the upper branch. Additionally, a mathematical model is proposed to estimate fluid forces due to vortex-induced vibrations without using measurement devices. This mathematical model enables the estimation of fluid force coefficients and phase lag using amplitude and frequency response of vortex-induced vibrations.