• Title/Summary/Keyword: Mechanical Stability Evaluation

Search Result 288, Processing Time 0.03 seconds

Effects of Mechanical Processing and Ganghwa Mugwort on Stability of Chicken Neobiahni during Storage (물리적 연육 처리 및 강화약쑥 첨가에 따른 계육 너비아니의 저장 안정성에 미치는 영향)

  • Hwang, Ko-Eun;Kim, Hyun-Wook;Song, Dong-Heon;Kim, Cheon-Jei;Jeon, Ki-Hong;Kim, Young-Boong;Choi, Yun-Sang
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.261-269
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effects of mechanical processing (tumbler, tenderizer, injector) and Ganghwa mugwort extracts (GM) on the stability of chicken Neobiahni during storage for 10 days at $4^{\circ}C$. Six treatments of chicken Neobiahni were manufactured with the following conditions: CON (tumbler), CON-A (tumbler + 0.2% GM), T1(tenderizer) T1-A (tenderizer + 0.2% GM), T2 (injector), T2-A (injector + 0.2% GM). Methods: The pH, POV, TBA, and sensory characteristics of chicken Neobiahni during storage for 10 days at $4^{\circ}C$ were measured in triplicate. Results: The pH of chicken Neobiahni was in the range of 6.00-6.37, with the highest values in the treatments containing GM (CON-A, T1-A, T2-A). Mechanical processing had no significant effects during storage. The color values (lightness, redness, and yellowness) did not differ significantly in all chicken Neobiahni samples, whereas storage time had a significant effect (p<0.05). The mechanical processing combined with GM appeared to effectively control the POV and TBA levels of chicken samples during the entire storage period. In addition, sensory evaluation ratings (color, juiciness, flavor, tenderness, and overall acceptability) were improved by the mechanical processing and the addition of GM. Conclusion: These results suggest that the combination of mechanical processing and Ganghwa mugwort extracts is a useful technique for retarding lipid oxidation in chicken Neobiahni.

Evaluation of Structural Stability of a Simple-typed Cultivation Facility for Growing Pleurotus ostreatus (간이 느타리재배사의 구조 안전성 평가)

  • Yum, Sung-Hyun;Yun, Nam-Kyu;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • The structural stability of a simple-typed cultivation facility with a width of 5.6 m for growing Pleurotus ostreatus was analyzed by modeling the facility as three-dimensional steel frames. The computation was done by using the finite element analysis program, ANSYS and the criterion of determining structural stability was based on the allowable stress design (ASD). The computational results showed that the structure with a straight-typed bed column was more stable than those with other types of bed columns against snow depth but there was little difference against wind velocity. As results, the interval of rafter had a more influence on safety wind velocity than that of bed column, while the interval of bed column was more important to safety snow depth. Finally the bed column against buckling was stable in all cases considered in this paper.

Effect of the Mixing Extraction of Perilla Seed and Peanut on Physicochemical Characteristics and Oxidative Stability of Perilla Oil (들께와 땅콩의 혼합 채유가 들기름의 이화학적 특성 및 산화안정성에 미치는 영향)

  • 권용주;김충기;오현화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1212-1219
    • /
    • 1999
  • The oils were extracted from the mixture of roasted(for 20 min at 190oC) perilla seeds(RPS) and roasted (commercially) peanuts(RPN) by solvent extraction(SE) and mechanical expression(ME). The effects of mixing ratio on physicochemical characteristics and oxidative stability of their oils were investigated. Yields of both SE and ME oils were increased as the RPN ratio in the mixture increased. In all the SE and ME oils, the major fatty acids were oleic, linoleic and linolenic acid, and total saturated fatty acids increased gradually, but total unsaturated fatty acids decreased gradually as the RPN ratio in the mixture was increased. The specific gravity and refractive index of both SE and ME oils decreased as the RPN ratio in the mixture was increased. Acid value, saponification value and iodine value of SE oils decreased as the RPN ratio in the mixture increased, whereas acid value and iodine value of ME oils decreased and saponification value increased. The colors of ME oils were darker brownish than SE oils. The oxidative stability of SE oils was decreased as the RPN ratio in the mixture increased, whereas that of ME oils was increased. Sensory evaluation of all the oils extracted from the mixture with various mixing ratio showed significant differences in flavor, taste, color and overall acceptance(p<0.01). The oil extracted from the mixture of the mixing ratio of 8:2(RPS:RPN) showed slightly higher preference regardless of extraction method.

  • PDF

Evaluation of Structural Stability at High Temperature for H-section Beams Made of Ordinary Strength Steels by Analytic Method (일반 구조용 강재 적용 H형강 보부재의 해석에 의한 고온내력 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.76-81
    • /
    • 2014
  • Structural stability of structural beams at high temperature had been evaluated though a horizontal furnace and a standard fire curve. If a structural method and a material are satisfied with the fire test, those are seemed to be guaranteed the safety of residences, fire services men, and properties of the buildings. However, that requires not only longer period but higher cost for making and testing of each structural element. That restrained from developing new methods and new fire protective materials. In this study, an analytic method was executed to demonstrate whether the analytic method using mechanical properties of structural steel at high temperature with heat transfer theory works is working. In this paper, the surface temperature rising and variance of structural stability of a simple H-section beam with a standard fire curve were evaluated and structural stabilities of H-section beam according to differences from length of beam were suggested.

Experimental investigation of effects of sand contamination on strain modulus of railway ballast

  • Kian, Ali R. Tolou;Zakeri, Jabbar A.;Sadeghi, Javad
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.563-570
    • /
    • 2018
  • Ballast layer has an important role in vertical stiffness and stability of railway track. In most of the Middle East countries and some of the Asian ones, significant parts of railway lines pass through desert areas where the track (particularly ballast layer) is contaminated with sands. Despite considerable number of derailments reported in the sand contaminated tracks, there is a lack of sufficient studies on the influences of sand contamination on the ballast vertical stiffness as the main indicator of track stability. Addressing this limitation, the effects of sand contamination on the mechanical behavior of ballast were experimentally investigated. For this purpose, laboratory tests (plate load test) on ballast samples with different levels of sand contamination were carried out. The results obtained were analyzed leading to derive mathematical expressions for the strain modulus ($E_V$) as a function of the ballast level of contamination. The $E_V$ was used as an index for evaluation of the load-deformation characteristics and bearing capacity of track substructure. The critical limit of sand contamination, after which the $E_V$ of the ballast reduces drastically, was obtained. It was shown that the obtained research results improve the current track maintenance approach by providing key guides for the optimization of ballast maintenance planning (the timing of ballast cleaning or renewal).

Fabrication Method and Performance Evaluation of Micro Igniter for MEMS Thruster (MEMS 추력기를 위한 마이크로 점화기의 제작 방법 및 성능 평가)

  • Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Micro igniter on the glass membrane for MEMS thruster was developed. The stability of the micro igniter by using a glass membrane with a thickness of tens of microns was improved. The micro igniter was fabricated by anisotropic wet etching of photosensitive glass and deposition of Pt/Ti for electric heat coil. The solid propellant was loaded into the propellant chamber without an especial technique due to the high structural stability of the glass membrane. Ignition tests were performed successfully. The minimum ignition delay was 27.5 ms with an ignition energy of 19.3 mJ.

Multi-head Inkjet Patterning System for Manufacturing a Full Color Polymer Light Emitting Device (pLED) (고분자 유기 EL 제조를 위한 멀티헤드형 잉크젯 패터닝 시스템)

  • Oh, Je-Hoon;Kim, Si-Kyoung;Yoon, Hee-Youl;Oh, Se-Il;Kang, Yoo-Myung;Kim, Kwang-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1219-1225
    • /
    • 2003
  • According to the increase of lifetime and efficiency, the interest in the pLED has dramatically increased recently because pLED can be applied to large-size and flexible displays. The core process in the manufacture of pLED is the printing process of red, green and blue light emitting polymers (LEP), and inkjet printing method is one of the promising technology to print red, green and blue LEP on glass substrates. In this work, we developed a multi-head inkjet patterning system with 3 heads for each color. The developed inkjet patterning system is composed of the precise positioning system, head controller circuit, real-time ink drop evaluation system, maintenance system, and stable ink supply system. Finally, we investigated the stability and reliability of the system by printing red, green and blue LEP on the dummy substrate.

  • PDF

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

Functional Evaluation after Modified Brostrom Procedure with Suture Bridge Technique for Chronic Ankle Instability in Athletes (운동선수의 만성 발목관절 불안정성에서 교량형 봉합술을 이용한 변형 Brostrom 술식 후의 기능평가)

  • Park, Ji-Kang;Park, Kyoung-Jin;Cho, Byung-Ki;Im, Chae-Wook
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.3
    • /
    • pp.108-114
    • /
    • 2014
  • Purpose: Ligament reattachment technique using a suture anchor appears to show satisfactory functional outcomes and mechanical stability compared with conventional bone tunnel technique. This study was prospectively conducted in order to evaluate functional outcomes of modified Brostrom procedures using the suture bridge technique for chronic ankle instability in athletes. Materials and Methods: Twenty eight athletes under 30 years of age were followed for more than two years after undergoing the modified Brostrom procedure using the suture bridge technique. Functional evaluation consisted of the foot and ankle outcome score (FAOS), foot and ankle ability measure (FAAM) score. Range of motion and time to return to exercise were evaluated using a periodic questionnaire. Talar tilt angle and anterior talar translation were measured through stress radiographs for evaluation of mechanical stability. Results: FAOS improved significantly from preoperative mean 59.4 points to 91.4 points (p<0.001). Daily living and sport activity scores of FAAM improved significantly from preoperative mean 50.5, 32.5 points to 94.8, 87.3 points, respectively (p<0.001). Talar tilt angle and anterior talar translation improved significantly from preoperative mean $16.8^{\circ}$, 13.5 mm to $4.2^{\circ}$, 4.1 mm at final follow-up (p<0.001). Times to return to exercise were as follows: mean 10.2 weeks in jogging, 15.4 weeks in spurt running, 13.1 weeks in jumping, 11.5 weeks in walking on uneven ground, 9.1 weeks in standing on one leg, 7.2 weeks in tip-toeing gait, 8.4 weeks in squatting, and 10.6 weeks in descending stairs. Conclusion: Modified Brostrom procedure using the suture bridge technique showed satisfactory functional outcomes for chronic ankle instability in athletes. Optimal indication and cost-effectiveness of the suture bridge technique will be studied in the future.

Evaluation of Structural Stability at High Temperatures for Beams Made of High Strength Structural Steels (SM 570) by Analytical Method (해석적 방법에 의한 고강도 강재(SM 570) 적용 보부재의 고온 시 내력 평가)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.49-54
    • /
    • 2014
  • Beams play an important role to transfer an applied load on the floor into columns. However, if the beams affected by a fire the length will be changed longer or shorter and the structural stability decreased gradually and resulted in structural failure. Therefore, the fire regulation requires that structural beam has to satisfied with a constant fire resistance. The fire resistance conducted by a constant size and boundary condition in an horizontal furnace. But this is not enough to adopt a beam made of high structural steels having various lengths. In this study, in order to suggest structural behaviors of beams made of high structural steels at high temperature, mechanical properties at high temperature and heat stress analysis were used and the surface temperature, expansion, displacement and variance of maximum load according to lengths of the beam were compared with those of SM 400.