• Title/Summary/Keyword: Mechanical Shearing

Search Result 227, Processing Time 0.03 seconds

Shearography in Tire Industry (타이어 검사를 위한 Shearogrpahy의 응용)

  • Kim, Koung-Suk;Kang, Ki-Soo;Yoon, Seung-Chul;Yang, Seung-Phil
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.298-303
    • /
    • 2003
  • In recent years, shearogrpahy has significantly improved capabilities in the areas of unbond and separation detection in tires. Although shearography has many advantages for qualitative evaluation, the technique remains the problem of quantitative analysis of inside defects, because shearography needs several effective factors including the amount of shearing, shearing direction and induced load, which exist as barrier for the quantitative analysis of inside defects. Since the factors are highly dependent on inspectors skill and also affect the in-situ workability. The factors were optimized and the size of cracks inside of pipeline and tire has been quantitatively determined.

  • PDF

Analysis of hemodynamics in cerebral artery related to moyamoya disease (모야모야병과 연관된 뇌동맥에서의 혈류역학 분석)

  • Lee, Seung-Cheol;Lim, Ki-Moo;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1647-1650
    • /
    • 2008
  • The moyamoya disease is a type of cerebrovascular disease which produces thin abnormal blood vessels like haze in the brain base because the end of internal carotid artery which supplies about 80% of blood is blocked. Regarding this moyamoya disease, the shearing stress and thrombus generation are mentioned as its main causes. This study three-dimensionally implemented the ICA, ACA, and MCA parts of the cerebrovascular configuration related to the moyamoya disease, and analyzed the hydrodynamic phenomenon with the commercial program ADINA. In particular, the correlations between shearing stress and speed distribution according to the branch angle of ACA and MCA. A numerical analysis found that the greater the branch angle of ACA and MCA, the lower the shearing stress and the greater the stationary area of the flow.. Put Abstract text here.

  • PDF

A Study on the Deformation Characteristics of Blanking Mold by the Change of Punch Shear Angle (블랭킹 금형의 펀치 전단 각 변화에 따른 변형 특성 연구)

  • Jong-Won Song;Tae-Gun Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • Blanking processing is one of the shear processing method in which the cut part becomes a product and piercing processing is a press molding process in which the cut part is discarded as a scrap. The shear angle of the punch used for blanking is determined by conditions such as the characteristics of the shear material, shear thickness and shear length. The shear angle of a punch is an important factor in determining the size of the shear load, the life of the shear punch, the deformation of the shear product and the quality of burrs In this study, blanking punches applied with four types of shear angles (i.e., 0°, 0°23", 0°46", 0°69") to the blanking punches of bracket products used in practical work were manufactured and tested. In the blanking experiment, the remaining variables except for the shear angle were the same. Experiments show that the product has the least amount of deformation in blanking punches with a shear angle equal to the material thickness, i.e., 0°46"..

  • PDF

Shape Design of Shearing Die for the Chassis Part with the Coupled Analysis of Shear and Die Structure (전단-구조연계해석을 이용한 섀시부품 전단금형의 형상설계)

  • Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.261-266
    • /
    • 2022
  • To reduce the weight of the vehicle, the application of the high strength steel sheets to chassis parts is increased. High forming load is induced during the shearing process of steel chassis parts made of high strength steel, and the possibility of an eccentric load is increased depending on the product seating condition on the die, which decreases the stability and lifespan of the die. In this paper, a three-dimensional finite element analysis with the continuum element was conducted using the damage theory for the cam-trimming process of the front lower arm. The structural analysis of the trimming die was performed with the forming load result obtained from the analysis, and the amount of deflection and the stress distribution of the die during the shearing process were evaluated for the confirmation of the tool stability. The shape of the weak region of the die was modified according to structural analysis and then the stability was confirmed with the finite element analysis. The analysis result showed that the possibility of tool failure during cam-trimming process was remarkably reduced, and the reliability of the proposed modified design was validated.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Mechanical properties of domestic small-diameter logs treated with Polyethylene glycol (PEG(Polyethylene Glycol)처리재의 역학적 특성)

  • 권구중;김남훈
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This study was carried out to investigate the mechanical properties of woods treated with 30% aqueous solution of PEG 1000. Compressive, bending and shearing strengths were slightly decreased by PEG treatment. Absorbed energy in impact bending did not show any significant differences between untreated and PEG-treated woods.

  • PDF

Transient Response of an Electrorheological Fluid in Shear Flow (전단 유동 하에서 전기유변유체의 과도응답 특성)

  • Choi, Byung-Ha;Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.411-417
    • /
    • 2009
  • The transient shear stress response of an electrorheological fluid is investigated experimentally. The characteristic time constants of an electrorheological fluid sheared between two concentric cylinders were obtained under various electric field strengths and shear rates. Also, two experimental modes are adopted to investigate the effect of the shear flow on the dynamic behavior of the fluid; one is that the electric field is induced before shearing, and the other is the electric field is induced after shearing. From the difference in the response time between two modes, the cluster formation time were obtained. The response times were decreased with the increase of the shear rate, irrelatively of the electric field strength. The cluster formation time were monotonically increased with increase of shear rate, and thereafter, were converged with a certain value.

Rheological properties of some thermotropic liquid crystalline polymers

  • Fan, Yurun;Dai, Shaocong;Tanner, Roger I.
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.109-115
    • /
    • 2003
  • Rheometry testing and the DSC measurement of five thermotropic liquid crystalline polymers (TLCP) have been carried out. The dynamic viscosities of the five TLCPs show a typical shear-thinning behaviour obeying the power-law with the power indices from 0.2 to 0.3. When these TLCPs are heated above the melting temperatures determined by the DSC measurements, the dynamic viscosities first rapidly decrease by 2~3 orders of magnitude then level off, finally increase gradually with the further increasing of temperature. The steady shearing exhibited the same behaviour as the dynamic shearing, but serious edge fracture of material slippage out of the plates occurred. The abnormal temperature dependence of the viscosities can be explained by the nematic-isotropic transition. By using the concept of activation energy, we propose a simple model which can fit the shear-thinning behaviour quite well and predict qualitatively correct temperature effects.

Study on the Fluid Film Thickness and Pressure of Elliptical Elastohydrodynamic Lubrication with Spin Effect for the Power Transmitting Contact in the Continuously Variable Transmission (무단 변속기의 동력전달 접촉에서 회전운동을 고려한 타원형상의 점접촉 탄성유체윤활연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.272-277
    • /
    • 2005
  • Continuously variable transmission (CVT) of toroidal type has a elliptical shape of contact zone under the elastohydrodynamic lubrication (EHL) condition, where the power is transmitted only by shearing the lubricant. Due to the small contact area of elliptical shape, the traction of the shear behaviors of lubricant over the contact zone is under extremely high contact pressure over 1.0GPa. During the power transmission by shearing the fluid, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spin. Among the movements, the spin effect that is the most undesirable contact behavior in transmitting the power frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of EHL with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

Analysis of an Inside Crack of Pressure Pipeline Using ESPI and Shearography

  • Kim, Kyung-Suk;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.643-648
    • /
    • 2002
  • In this study, shearography and ESPI have been used for quantitative analysis of an inside crack of pipeline and both of them appeared suitable to qualitatively detect inside crack. However, shearography needs several effective factors including the amount of shearing, shearing direction and induced load for the quantitative evaluation of the inside crack. In this study, the factors were optimized for the quantitative analysis and the site of cracks has been determined. Although the effective factors in shearography has been optimized, it is difficult to determine the factors exactly because they are related to the details of tracks. On the other hand, ESPI is independent on the details of a crack and only the induced load plays an important role. The out-of-plane displacement was measured under the optimized load and the measured were numerically differentiated, which resulted in an equivalent to the shearogram. The size of cracks can be determined quantitatively without any detail of a crack.