• Title/Summary/Keyword: Mechanical Sensor

Search Result 2,614, Processing Time 0.024 seconds

Wearable Force Sensor Using 3D-printed Mold and Liquid Metal (삼차원 프린트된 몰드와 액체 금속을 이용한 웨어러블 힘 센서 개발)

  • Kim, Kyuyoung;Choi, Jungrak;Jeong, Yongrok;Kim, Minseong;Kim, Seunghwan;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • In this study, we propose a wearable force sensor using 3D printed mold and liquid metal. Liquid metal, such as Galinstan, is one of the promising functional materials in stretchable electronics known for its intrinsic mechanical and electronic properties. The proposed soft force sensor measures the external force by the resistance change caused by the cross-sectional area change. Fused deposition modeling-based 3D printing is a simple and cost-effective fabrication of resilient elastomers using liquid metal. Using a 3D printed microchannel mold, 3D multichannel Galinstan microchannels were fabricated with a serpentine structure for signal stability because it is important to maintain the sensitivity of the sensor even in various mechanical deformations. We performed various electro-mechanical tests for performance characterization and verified the signal stability while stretching and bending. The proposed sensor exhibited good signal stability under 100% longitudinal strain, and the resistance change ranged within 5% of the initial value. We attached the proposed sensor on the finger joint and evaluated the signal change during various finger movements and the application of external forces.

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

Fabrication and Calibration of pH Sensor Using Suspended CNT Nanosheet (부양형 탄소나노튜브 나노시트를 이용한 pH센서의 제작과 보정)

  • Ryu, Hyobong;Choi, WooSeok;An, Taechang;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.207-211
    • /
    • 2013
  • In this research, the pH sensor was developed using CNT nanosheet with Nafion coating for the advanced medical sensor such as a blood gas analyzer. The CNT nanosheet was formed by dielectrophoresis and water-meniscus between cantilever-type electrodes. Then, the process of the heat annealing and the Nafion coating was conducted for reducing contact resistance and giving proton selectivity respectively. We measured the response of the pH sensor as the electrolyte-gated CNT-nanosheet field effect transistor. The sensor showed a linear current ratio in a similar range of the normal blood pH. A calibration method for decreasing of the response variation among sensors has also been introduced. Coefficient of variance of the pH sensor was decreased by applying the calibration method. A linear relation between the calibrated response of the sensors and pH variance was also obtained. Finally, the pH sensor with a high resolution was fabricated and we verify the feasibility of the sensor by applying the calibration method.

A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor (압력센서 개발을 위한 탄소 나노 튜브 기반 지능형 복합소재 전왜 특성 연구)

  • Kim, Sung Yong;Kim, Hyun Ho;Choi, Baek Gyu;Kang, In Hyuk;Lee, Ill Yeong;Kang, In Pil
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

The development of a variable capacitive pressure sensor for TPMS(tire pressure monitoring system) (TPMS 적용을 위한 가변 정전 용량형 압력센서 개발)

  • Choi, Bum-Koo;Kim, Do-Hyung;Oh, Jae-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2005
  • In this study, a variable capacitive pressure sensor is fabricated for TPMS (Tire Pressure Monitoring System). This study is for developing sensors which consecutively measure the tire pressure given as 30 psi from the industrial standard. For improving non-linearity of the prior capacitive pressure sensors, it is suggested that touch mode capacitive pressure sensor be applied. In addition, initial capacitance is designed as small as possible for the conformity to the wireless sensor. ANSYS, commercial FEA package, is used for designing and simulating the sensor. The device is progressed by MEMS (Micro Electro Mechanical Systems) fabrication and packaged with PDMS. The result is obtained sensitivity, 1 pF/psi, through a pressure test. The simulation result is discrepant from experiment one. Wafer's uniformity is presumed as the main reason of discrepancy.

Micro-Machined Capacitive Linear Encoder with a Mechanical Guide (마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더)

  • Kang, Daesil;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.

Theoretical study of flow and heat transfer around silicon bridge in a flow sensor (유속 센서의 실리콘 브리지 주위의 유동 및 열전달 수치해석에 관한 연구)

  • Hwang, Ho-Yeong;Kim, Ho-Yeong;Jeong, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1376-1384
    • /
    • 1996
  • Measuring the velocity of fluid flow, semiconductor flow sensors are widely used in the various fields of engineering and science such as the semiconductor manufacturing processes and electronic control engines for automobiles. In the near future, this type of sensors will replace present hot wire type sensors or other type flow sensor due to its low price, easy handling and small size. To develop the advanced semiconductor flow sensor, it is necessary to obtain characteristics of the flow and the heat transfer around the sensor in advance. In the present study, the theoretical analysis including mathematical modeling and numerical calculation to predict the characteristics of heat transfer and flow field around the sensor was carried out. The main parameters for optimum design of the flow sensor are the free stream velocity, the heat generation rate of silicon arm and the distance between arms. Effects of these parameters on flow and heat transfer around the sensor and the temperature difference between arms are examined.

Design of an Absolute Location and Position Measuring System for a Mobile Robot

  • Kim, Dong-Hwan;Park, Young-Chil;Hakyoung Chung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1369-1379
    • /
    • 2001
  • This paper focuses on a development of a sensor system measuring locations of a vehicle to localize a mobile robot while it tracks on the track (location sensor) . Also it focuses on a system configuration identifying the vehicle's orientation and distance from the object while it is stationary at certain station (position sensor) . As for the location sensor it consists of a set of sensors with a combined guiding and counting sensor, and an address-coded sensor to localize the vehicle while moving on the rail. For the position sensor a PSD (Position Sensitive Device) sensor with photo-switches sensor to measure the offset and orientation of the vehicle at each station is introduced. Both sensor systems are integrated with a microprocessor as a data relay to the main computer controlling the vehicle. The location sensor system is developed and its performance for a mobile robot is verified by experiments. The position measuring system is proposed and is robust to the environmental variation. Moreover, the two kinds of sensor systems guarantee a low cost application and high reliability.

  • PDF

A Study on the Fail Safety of Electronics Power Steering Using Sensor Fusion (Sensor Fusion을 이용한 전자식 조향장치의 Fail Safety 연구)

  • Kim, Byeong-Woo;Her, Jin;Cho, Hyun-Duck;Lee, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1371-1376
    • /
    • 2008
  • A Steer-by-Wire system has so many advantages comparing with conventional mechanical steering system that it is expected to take key role in future environment friendly vehicle and intelligent transportation system. The mechanical connection between the hand wheel and the front axle will become obsolete. SBW system provides many benefits in terms of functionality, and at the same time present significant challenges - fault tolerant, fail safety - too. In this paper, failure analysis of SBW system will be performed and than sensor fusion technique will be proposed for fail safety of SBW system. A sensor fusion logic of steering angle sensor by using steering angle sensor, torque sensor and rack position sensor will be developed and simulated by fault injection simulation.