• Title/Summary/Keyword: Mechanical Rigidity

Search Result 289, Processing Time 0.026 seconds

Flexural behavior and resistance of uni-planar KK and X tubular joints

  • Chen, Yiyi;Wang, Wei
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.123-140
    • /
    • 2003
  • The importance of the research on moment-resistant properties of unstiffened tubular joints and the research background are introduced. The performed experimental research on the bending rigidity and capacity of the joints is reported. The emphasis is put on the discussion of the flexural behavior of the joints including sets of geometrical parameters of the joints and several loading combinations. Procedures and results of loading tests on four full size joints in planar KK and X configuration are described in details at first. Mechanical models are proposed to analyze the joint specimens. Three-dimensional nonlinear FE models are established and verified with the experimental results. By comparing the experimental data with the results of the analysis, it is reported reasonable to carry out the structural analysis under the assumption that the joint is fully rigidly connected, and their bending capacities can assure the strength of the members connected under certain limitation. Furthermore, a parametric formula for inplane bengding rigidity of T and Y type tubular joints is proposed on the basis of FE calculation and regression analysis. Compared with test results, it is shown that the parametric formula developed in this paper has good applicability.

Deflection Characteristics of the Rice Stalk in Harvesting Operation by Combine for Multi-crops (보통형 콤바인의 수확작업에 관계하는 벼줄기의 굽힘특성)

  • 김영근;홍종태;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.485-490
    • /
    • 2003
  • Flexural rigidity(EI) and deflection characteristics of rice stalks were studied to investigate the mechanical interaction between a rice stalk and a combine reel in harvesting. Deflection of a rice stalk caused by reel operation is so large that conventional equation of small deflection fer elastic beam cannot be applied to the study of deflection characteristics. Therefore, an equation of large deflection for elastic beam was introduced in this study. Feasibility of this equation was examined by comparing theoretical calculation with the measured results for piano wire, and by the relationship between deflection and load acting on a rice stalk which was presumed by this equation. Results showed that the large deflection equation could predict the measurement data quite well. From this research, the following results were obtained. 1. Flexural rigidity(EI) calculated from the equation of large deflection was 4.0${\times}$l0$^4$N$.$$\textrm{mm}^2$(diameter 1.4mm, deflection 300mm) while the actual EI value of a piano wire(diameter 1.4mm) was 3.9${\times}$10$^4$N$.$$\textrm{mm}^2$. 2. The relationship between deflection and load acting on a rice stalk could be presumed by the large deflection equation. Flexural rigidity values of tested rice stalks calculated from the equation of large deflection were 1.6∼2.4${\times}$ l0$^4$N$.$$\textrm{mm}^2$(Hwa sung), 2.7∼3.5${\times}$ l0$^4$N$.$$\textrm{mm}^2$(Il pum) and 1.7∼2.4${\times}$ l0$^4$N$.$$\textrm{mm}^2$(Damakum)

Bending Analysis and Flexural Rigidity of Rectangular Corrugated Plates (사각 주름판의 굽힘강성 및 굽힘해석)

  • Jung, Kang;Kim, Young-Wann
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.38-44
    • /
    • 2012
  • In this paper, the bending characteristics of the corrugated plates is analyzed. The trapezoidally, triangularlly and sinusoidally corrugated plates are considered. The corrugated plate is treated as an orthotropic plate that has different flexural properties in two perpendicular directions. The equivalent bending and twisting rigidities for the equivalent orthotropic plates are derived. The equivalent flexural rigidities are estimated under the following postulations: (1) The angle of continuously corrugated plate is not changed after the deformation. (2) When the pure bending moment is applied in corrugated direction of the plate, the its plane is in pure bending. Several numerical examples are analyzed with the proposed method and compared with published results.

Experimental Study on Cosserat Elasticity of Porous Solids (코세라 탄성론을 이용한 기공성 재료의 탄성거동에 관한 실험적 연구)

  • 정민호;윤성진;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.342-350
    • /
    • 1993
  • Experiments are performed to determine the dependence of torsional rigidity upon the cross-sectional area for specimens of dense polyurethane foam. Testing equipment was designed and fabricated in the laboratory to satisfy the experimental characteristics. Results show the increase of torsional rigidity compared to the expected value based on the conventional elasticity. And this can be explained that the consideration of the internal motions of constitutive particles predicts the elastic behavior of the material better.

The Torsion Analysis of a Cylindrical Bar with the Cross-Section Bounded by Circles (단면이 원형경계를 갖는 실린더 축의 비틀림 해석)

  • 김윤영;오경민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2322-2330
    • /
    • 1994
  • The torsion problem in a cylindrical rod is usually formulated in terms of either the warping function or the Prandtl stress function. In a rod whose cross-section is bounded by circles and rectangles, we develop an analytic solution approach based on the warping function, which satisfies Laplace's equation. The present formulation employs polynomials and The Fourier series-type solutions, both of which satisfy exactly the governing differential equation. Using the present method, the maximum shear stress and torsional rigidity are efficiently and accurately calculated and the present results are compared with those by other methods. The specific numerical examples include the case with eccentric holes which was investigated earlier. The finite element results are also compared with the present results.

Multi-Phase Optimization of Quill Type Machine Structures(1) (Static Compliance Analysis & Multi-Objective Function Optimization) (퀼형 공작기계구조물의 다단계 최적화(1) (정강성 해석 및 다목적함수 최적화))

  • Lee, Yeong-U;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.155-160
    • /
    • 2001
  • To achieve high precision cutting as well as production capability in the machine tool, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In order to predict the qualitative behavior of a machine tool, simultaneous analysis of mechanics and heat transfer is required. Generally, machine tool designers have solved designing problems based on partial estimation of the specified rigidity. This study clears the inter-relationship between therm, and propose multi-phase optimization of machine tool structure using a genetic algorithm. The multi-phase solution method is consists of a series of mechanical design problem. At this first phase of static design problem, multi-objective optimization for the purpose of minimization of the total weight and static compliance minimization is solved using the Pareto Genetic Algorithm.

  • PDF

Low-Stress Physical/Mechanical Properties of Cochineal-dyed Cotton, Silk, Nylon, and Polyester Fabrics subjected to Chitosan-Pretreatment

  • Kim, Jong-Jun;Jeon, Dong-Won;Kim, Sun-Hwa
    • Journal of Fashion Business
    • /
    • v.7 no.6
    • /
    • pp.50-56
    • /
    • 2003
  • Chitosan has been widely applied to the products in various industries such as textile fabrics, apparels, foods, medical area, etc. Cochineal has long been employed as one of natural dyestuffs in the textile industry. The effect of chitosan pre-treatment on the low-stress physical and mechanical properties of cochineal-dyed fabrics including cotton, silk, nylon and polyester fabrics was investigated in this study. The chitosan treatment and mordanting of the fabrics changed the bending, shear, compression, and surface properties of the fabrics. In cotton fabric specimens, while the increase of B(bending rigidity) of cotton is relatively high, the increase of G(shear rigidity) of cotton is relatively low. In nylon and PET fabric specimens, while the increase tendency of B is relatively low, that of G is high compared to the corresponding cotton fabrics.

Iterative Learning Control of Trajectory Generation for the Soft Actuator (궤적 생성 반복 학습을 통한 소프트 액추에이터 제어 연구)

  • Song, Eunjeong;Koo, Jachoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.35-40
    • /
    • 2021
  • As the robot industry develops, industrial automation uses industrial robots in many parts of the manufacturing industry. However, rigidity-based conventional robots have a disadvantage in that they are challenging to use in environments where they grab fragile objects or interact with people because of their high rigidity. Therefore, researches on soft robot have been actively conducted. The soft robot can hold or manipulate fragile objects by using its compliance and has high safety even in an atypical environment with human interaction. However, these advantages are difficult to use in dynamic situations and control by the material's nonlinear behavior. However, for the soft robot to be used in the industry, control is essential. Therefore, in this paper, real-time PD control is applied, and the behavior of the soft actuator is analyzed by providing various waveforms as inputs. Also, Iterative learning control (ILC) is applied to reduce errors and select an ILC type suitable for soft actuators.

Microstructures and Mechanical Properties of Beryllium(Be)-free Ni-Cr-Mo based Alloys for Metal-Ceramic Crown (베릴륨(Be)이 미 첨가된 치과도재소부용 Ni-Cr-Mo계 합금의 미세조직 및 기계적 성질 특성)

  • Song, Kyung-Woo;Go, Eun-Kyoung;Lee, Jung-Hwan;Jung, Jong-Hyun;Noh, Hak;Han, Jae-Ick
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.321-329
    • /
    • 2006
  • The popularity of Ni-Cr-Mo based metal alloys for metal-ceramic crown have increased recently because of low price, superior yield strength and rigidity. the use of these alloys give them the potential advantage of thinner copping with the required rigidity for long span bridges. The purpose of this study was to assess the microstructures and mechanical properties of Ni-Cr-Mo-(Si,Al,Nb,Zr,Ti.Cu,Mm) based Alloys not containing beryllium(Be) related toxic effects. The abtained results indicated that as-cast these specimen alloys showed compositional and microstructural differences, and mechanical properties values of Ni69Cr20Mo5Si2Al4 alloy among these specimen alloys was found to be superior to those of commercial Ni-Cr based alloy using in market place today.

  • PDF

Effects os Stoichiometric Ratio on Dynamic Mechanical Behavior for an Epoxy/Anhydride System (에폭시/산무수물계에서 동역학적 거동에 미치는 화학양론비의 효과)

  • Kim, Deuk-Su;Lee, Jong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1089-1096
    • /
    • 1997
  • 본 연구에서는 에폭시/산무수물계에 화학양론비(r=산무수물/에폭시)를 0.5, 0.7,0.9,1.1로 변화시켜 서로 다른 두종류의 경화촉진제 1-cyanoethy1-2-ethy1-4-methy1 imidazole(2E4MZ-CN)과 N,N-dimethy1 benzy1 amine(BDMZ)을 첨가한 시료에 대한 경화거동과 경화 후 물성을 관찰하였다. 이 시료의 등온 경화거동은 동역학 측정기(dynamic mechanical analyzer, DMA)와 시차주사 열량분석기(differential scanning calorimeter, DSC)를 이용하여 조사하였다. DMA로부터 구해진 결과를 보면 경화시 상대저장강성을 (relative storage rigidity, RSR)과 상대손실강성율(relative loss rigidity, RSR)과 상대손실강성율(relative loss rigidity, RLR)의 변화가 r값과 경화촉진제의 종류에 영향을 받았다. 그리고 DSC결과는 r값이 감소함에 따라 경화가 촉진되는 것으로 나타났다. 경화물의 성질을 조사하기 위하여 사용된 DMA로부터 얻어진 유리전이온도(glass transition temperature, T$_{g}$)와 가교결합간의 평균분자량(average molecular weigh between crosslinks, M$_{c}$은 사용한 두 경화촉진제에 대하여 r값의 영향이 다르게 나타났다. BDMA의 경우는 T$_{g}$가 1:1화학양론비인 r=0.9에서 최고치를 보였으나, 2E4MZ-CN은 r이 감소함에 따라 계속 증가하는 양상을 보였다. 이와 같은 경향은 2E4MZ-CN을 경화촉진제로 사용하였을 때 에폭시가 과량으로 될수록 잔류 에폭시기들간의 에케르반응이 추가적으로 일어나 M$_{c}$가 감소하기 때문이다.

  • PDF