• Title/Summary/Keyword: Mechanical Properties Optimization

Search Result 359, Processing Time 0.026 seconds

Characteristics and Optimization of the Formula of Mashed Potatoes Using Purple-fleshed Potato (Solanum tuberosum L.) by Mixture Design (혼합물 실험계획법을 이용한 유색감자 자영(Solanum tuberosum L.) 매쉬드 포테이토 분말의 혼합비 최적화 및 매쉬드 포테이토의 특성)

  • Jung, Hwabin;Choi, Ji-il;Yoon, Won Byong
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2017
  • Purple-fleshed potato powder (PFPP) was investigated to determine optimal mixing ratio with milk powder and dextrin to produce a ready-to-eat mashed potato powder. The rheological characteristics, color, and anthocyanin contents were studied at a different concentration of ingredients. The power-law model was applied to explain the mechanical spectra of mashed potatoes which represented the change in structure induced by different mixing ratios. Mixture design was used to obtain the experimental points used to establish the empirical models to describe the effects of each ingredient on the characteristic of the mashed potato. The results of mechanical spectra showed that both storage and loss moduli (G' and G'') were significantly influenced by PFPP and milk powder concentration. The power law parameters n' and n'' showed higher values for the mashed potato with a lower concentration of PFPP and a higher concentration of milk powder, which showed that the gel networks involved in the mashed potato were weaker. The optimum mixing ratio with the highest redness and anthocyanin content, while maintaining the rheological properties similar to the commercial mashed potato, was determined as PFPP:milk powder:dextrin = 90.49:4.86:4.65 (w/w). The proportions of PFPP and milk powder in the formulation significantly changed the characteristics of mashed potato, whereas no significant effect of dextrin was observed in this formulation.

Optimization of White Pan Bread Preparation via Addition of Purple Barley Flour and Olive Oil by Response Surface Methodology (자맥가루와 올리브유 첨가 식빵의 제조조건 최적화)

  • Kim, Jin Kon;Kim, Young-Ho;Oh, Jong Chul;Yu, Hyeon Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1813-1822
    • /
    • 2012
  • The purpose of this study was to determine the optimal mixing conditions of two different amounts of purple barley flour ($X_1$), and olive oil ($X_2$) in baking white pan bread. The experiment was designed according to the central composite design of response surface methodology, which showed 10 experimental points including 2 replicates. The more purple barley flour added, the more weight, yellowness (b-value), hardness, gumminess, and chewiness increased; but the more volume, specific loaf volume, lightness (L-value), and springiness decreased. The greater the amount of olive oil added, the more hardness, cohesiveness, gumminess, and chewiness increased; but the more yellowness (b-value) and springiness decreased. The physical and mechanical properties were affected more by the amount of purple barley flour than by the amount of olive oil. Sensory properties except flavor were more affected by the amount of purple barley flour than by the amount of olive oil.

A Study on Optimization for Location and type of Dam Considering the Characteristic of Large Fault (대규모 단층특성을 고려한 최적 댐위치 및 형식 선정)

  • Kim, Han-Jung;Lyu, Young-Gwon;Kim, Young-Geun;Lim, Hee-Dae
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.227-242
    • /
    • 2012
  • Youngju multipurpose dam is planned to minimizing the damage by flood and obtaining the water for industrial use in Nakdong river region. Faults in rock mass have strong influences on the behaviors of dam structure. Thus, it is very important to analyse for the characteristics of fault rocks in dam design. However, due to the limitation of geotechnical investigation in design stages, engineers have to carry out the additional geological survey including directional boring to find the distribution of faults and the engineering properties of faults for stability of dam. Especially, the selection of location of dam and type of dam considering fault zone must be analyzed through various experimental and numerical analysis. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large fault zone through the complex dam is designed in foundation region. Also, the distribution of structural geology, the shape of faults and the mechanical properties of fault rock were studied for the reasonable design of the location and type of dam for long-term stability of the complex dam.

Optimal Sensor Placement of Boundaries and Robustness Analysis for Chemical Release Detection and Response of Near Plant (주변 사업장의 화학물질 확산 감지와 대응을 위한 경계면의 센서배치 최적화 및 강건성 분석)

  • Cho, Jaehoon;Kim, Hyunseung;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.104-111
    • /
    • 2016
  • Recently, the quantities of chemical material are increasing in chemical industries. At that time, release accident is increasing due to aging of equipment, mechanical failure, human error, etc. and industrial complexes found community properties in a specific area. For that matter, chemical release accident can lead to hight probability of large disaster. There is a need to analyze the boundaries optimal sensor placement calculated by selecting release scenarios through release condition and wether condition in a chemical process for release detection and response. This paper is to investigate chlorine release accident scenarios using COMSOL. Through accident scenarios, a numerical calculation is studied to determine optimized sensor placement with weight of detection probability, detection time and concentration. In addition, validity of sensor placement is improved by robustness analysis about unpredicted accident scenarios. Therefore, this verifies our studies can be effectively applicable on any process. As mention above, the result of this study can help to place mobile sensor, to track gas release based concentration data.

Optimization of White Pan Bread Preparation by Addition of Black Barley Flour and Olive Oil using Response Surface Methodology (흑맥가루와 올리브유 첨가 식빵의 제조조건 최적화)

  • Kim, Jin Kon;Kim, Young-Ho;Oh, Jong Chul;Yu, Hyeon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.180-190
    • /
    • 2013
  • The purpose of this study was to determine the optimal amount of 2 ingredients, i.e., black barley flour ($X_1$), and olive oil ($X_2$), for the production of white pan bread from black barley flour. The experiment was designed according to the central composite design of response surface methodology, which showed 10 experimental points, including 2 replicates for black barley flour and olive oil. Significant differences were found in the results of the physical and mechanical properties analysis of each sample, including weight (p<0.05), volume (p<0.01), specific loaf volume (p<0.01), color L (p<0.01), color a (p<0.001), color b (p<0.05), hardness (p<0.001), springiness (p<0.01), cohesiveness (p<0.01), gumminess (p<0.001) and chewiness (p<0.05). Significant differences in the sensory measurements were observed in color (p<0.01), appearance (p<0.01), texture (p<0.05), taste (p<0.05) and overall quality (p<0.05). The optimum formulation, which was calculated using the numerical and graphical methods, was determined to be 18.00% black barley flour and 1.80% olive oil.

The Quality Characteristics of Cookies Prepared with Agaricus blazei Murill (아가리쿠스 버섯 가루를 첨가한 쿠키의 최적화 연구)

  • Lee, Heejeong;Jeong, Hee Sun;Joo, Nami
    • Korean journal of food and cookery science
    • /
    • v.31 no.2
    • /
    • pp.175-184
    • /
    • 2015
  • The purpose of this study was to determine the optimal mixing ratio of Agaricus blazei Murill powder and butter in the preparation of cookies. The experimental design utilized herein was based on central composite design for response surface methodology, which included 10 experimental points, including 2 replicates for Agaricus blazei Murill and butter. The physical, mechanical, and sensory properties of the test were measured, and these values were applied to the mathematical models. A canonical form and perturbation plot showed the influence of each ingredient on the final mixed product. The spread ratio increased significantly with an increase in Agaricus blazei Murill powder and butter (p<0.05). The response surface methodology was applied to evaluate the effect of Agaricus blazei Murill powder and butter on cookie moisture and color (L, a) (p<0.001). Sensory evaluation showed significant values for color (p<0.05), flavor (p<0.05), texture (p<0.05) and overall quality (p<0.01) in the predicted model. The optimum formulation by numerical and graphical methods was calculated as follows: Agaricus blazei Murill powder 3.63 g, butter 55.37 g.

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

Development of Insulation Sheet Materials and Their Sound Characterization

  • Ni, Qing-Qing;Lu, Enjie;Kurahashi, Naoya;Kurashiki, Ken;Kimura, Teruo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.25-40
    • /
    • 2008
  • The research and development in soundproof materials for preventing noise have attracted great attention due to their social impact. Noise insulation materials are especially important in the field of soundproofing. Since the insulation ability of most materials follows a mass rule, the heavy weight materials like concrete, lead and steel board are mainly used in the current noise insulation materials. To overcome some weak points in these materials, fiber reinforced composite materials with lightweight and other high performance characteristics are now being used. In this paper, innovative insulation sheet materials with carbon and/or glass fabrics and nano-silica hybrid PU resin are developed. The parameters related to sound performance, such as materials and fabric texture in base fabric, hybrid method of resin, size of silica particle and so on, are investigated. At the same time, the wave analysis code (PZFlex) is used to simulate some of experimental results. As a result, it is found that both bundle density and fabric texture in the base fabrics play an important role on the soundproof performance. Compared with the effect of base fabrics, the transmission loss in sheet materials increased more than 10 dB even though the thickness of the sample was only about 0.7 mm. The results show different values of transmission loss factor when the diameters of silica particles in coating materials changed. It is understood that the effect of the soundproof performance is different due to the change of hybrid method and the size of silica particles. Fillers occupying appropriate positions and with optimum size may achieve a better effect in soundproof performance. The effect of the particle content on the soundproof performance is confirmed, but there is a limit for the addition of the fillers. The optimization of silica content for the improvement of the sound insulation effect is important. It is observed that nano-particles will have better effect on the high soundproof performance. The sound insulation effect has been understood through a comparison between the experimental and analytical results. It is confirmed that the time-domain finite wave analysis (PZFlex) is effective for the prediction and design of soundproof performance materials. Both experimental and analytical results indicate that the developed materials have advantages in lightweight, flexibility, other mechanical properties and excellent soundproof performance.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.