• 제목/요약/키워드: Mechanical Press

검색결과 4,733건 처리시간 0.032초

고온 프레스성형시 보론강 알루미늄 코팅층 거동특성 (Characterization of Aluminum Coated Layer in Hot Press Forming of Boron Steel)

  • 장정환;주병돈;이재호;문영훈
    • 열처리공학회지
    • /
    • 제21권4호
    • /
    • pp.183-188
    • /
    • 2008
  • Hot press forming allows geometrically complicated parts to be formed from sheet and the rapid cooling hardens them to extremely high strength. The main purpose of this research is to characterize Al coated layer in Al coated boron steel during hot press forming. For the hot press hardening experiment, test specimens were heated up to $810{\sim}930^{\circ}C$ and held for 3, 6 and 9 minutes, respectively. And then, some specimens were press hardened and others were air-cooled without any pressing for the comparison purpose. Al coated layer shows four distinct micro-structural regions of interest; diffusion zone, Al-Fe zone(I) low-Al zone(LAZ) and Al-Fe zone(II). Band-like LAZ is clearly shown at temperature ranges of $810{\sim}870^{\circ}C$ and sparsely dispersed at temperature higher than 900oC. The micro-cracking behavior in the Al coated layer during forming were also analyzed by bending and deep drawing tests. The strain concentration in softer LAZ is found to be closely related with micro-cracking and exfoliation in coated layer during forming.

냉간 등방압 성형기를 이용한 미세박판 인장시험시편 가공기술 및 정밀 기계적 물성 측정기술 (Manufacturing Technology of Thin Foil Tensile Specimen Using Cold Isostatic Press and Precision Mechanical Property Measurement Technology)

  • 이혜진;박훈재;이낙규;김승수;이형욱;황재혁;박진호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.245-248
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical property. This thin foil tensile specimen manufacturing technology is a method that can make a metal thin foil specimen for micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect that precision mechanical property of micro/nano material and component. Micro and Nano mechanical property can be measured using this technology and mechanical property data base of micro/nano material and component can be constructed.

  • PDF

Consolidation 방법에 의해 제작된 유리섬유강화 복합재료의 결정성과 기계적성질에 관한 연구 (Crystallinity and Mechanical Properties of Glass Fiber Reinforced Thermoplastic Composites by Rapid Press Consolidation Technique)

  • 신익재;김동영;이동주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.91-96
    • /
    • 2000
  • Glass fiber reinforced thermoplastic composites were manufactured by Rapid Press Consolidation Technique(RPCT) as functions of temperature, pressure and time in pre-heating, consolidation and solidification sections during the manufacturing processing. It was found that the material property is greatly affected by pre-heating temperature under vacuum, mold temperature and molding pressure. Among them, the temperature In the mold was the most critical factor in determining the mechanical properties and the molded conditions of specimen. The crystallinity of PET matrix was also investigated by differential scanning calorimetry(DSC) measurements for various processing conditions. The level of crystallinity($X_c$) depended strongly on the mold temperature, cooling rate and the type of composite. The difference in $X_c$ is believed to be one of important factors in characterizing the mechanical properties.

  • PDF

프레스 포밍 공정을 이용한 피팅 파이프 성형 조건 선정 (Determination of Forming Conditions of Fitting Pipes using Press Forming Processes)

  • 김태걸;박영철;박경용
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.101-106
    • /
    • 2012
  • The press bulging process is very useful and productive method to produce round-type mechanical components which have not been able to be manufactured because of limitation of the conventional press technology. The application of the press bulging process has expanded very quickly in the hydraulic and electronic industry and more recently it has been used to produce other mechanical parts such as the automobile and shipping parts. This expanding application also has brought some unsolved problems and leads many researchers to put their effort into the die design of the press bulging process. In this study, to obtain the optimum die shape for the press bulging process, various process parameters have been considered such as corner radius, bulging height, pressing length, and forming load, etc. The main interest of this paper is to verify the press bulging process which has more than 4.0 in height-length ratio. From this aspect, Finite Element analysis shows great ability to simulate the precise deformation process and gives us manufacturing database. Consideration of strain, stress, and strain-rate for the various cases has been also taken to keep the forming load within a particular range.

냉간 압연강 판재 기계적 접합부의 인장-박리 피로 강도 (Peel-tension Fatigue Strength of Mechanical Press Joints of Cold Rolled Steel Sheet)

  • 이만석;박종민;김택영;김호경
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.42-48
    • /
    • 2012
  • Peel-tension fatigue experiments were conducted for investigating on fatigue strength of mechanical press joints of SPCC steel sheet used in the field of the automobile industry. In addition, finite element method analysis on the peel-tension specimen was conducted using HyperMesh and ABAQUS softwares. The cold rolled mild steel was used to join the T-shaped peel-tension specimen with a button diameter of 5.4 mm and a punch diameter of 8.3 mm. The fatigue limit load amplitude was found to be 112.4 N at the number of cycles 106, indicating that the ratio of fatigue limit load to static peel-tension strength was about 8%. This value suggests that the mechanical press joint is highly vulnerable to peel-tension load rather than to tensile-shear load, considering that the ratio of fatigue limit load to static tensile-shear strength was about 43%. Fatigue failure mode was found to be interface-failure mode.

유한요소해석과 영향함수법을 이용한 압입축의 프레팅 마모해석 (Fretting Wear Simulation of Press-Fitted Shaft with Finite Element Analysis and Influence Function Method)

  • 이동형;권석진;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.54-62
    • /
    • 2008
  • In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

기계식 프레스 Frame의 최적설계에 관한 연구 (A study on Optimum Design of the Frame for Mechanical Press)

  • 조백희;류병순
    • 연구논문집
    • /
    • 통권22호
    • /
    • pp.65-74
    • /
    • 1992
  • This paper aims at calculating optimum design dimensions to minimize the weight satisfied strain and stress intensity of the frame while loading maximum weight into a mechanical press in the static condition. Analysis of the frame was carried out by using the FEM, then the optimum condition was obtained by using these data. As modeling in the finite element analysis has great impact on the reliablity of analysis results, the analyzed object was selected a 150-ton mechanical press of J Company, the part little affected to structural rigidity was simplified, the load condition was considered in the only maximum load, the boundary condition was used by giving symmetric displacement due to symmetric boundary condition, the finite element was applied a linear membrane element. An intermediate processor program applied the normal ANSYS to analyze finite elements was developed, and the design sensitivity was calculated. This program was applied to the optimum design.

  • PDF

새로운 박판샌드위치 판재의 삼점굽힘거동 (Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending)

  • 이정인;강기주
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.529-535
    • /
    • 2013
  • 알루미늄 확장 금속망 심재와 스테인리스강 면재를 에폭시 수지로 접합하여 제조되는 새로운 박판샌드위치 판재의 제조방법을 제시하고 이의 굽힘 거동을 조사하였다. 강도 및 강성도에 대한 이론해를 제시하고 실험을 통하여 프레스 성형성과 굽힘강도 증대효과 등을 평가하였다. 제시된 제조방법과 재료조합에서 삼점굽힘 하중 작용 시 면재-심재 접착부 분리 현상보다 면재의 항복이 훨씬 조기에 발생하여 본 샌드위치 판재의 우수성을 확인하였다. 샌드위치 판재의 강성도 및 면재 항복이 발생하는 하중과 접착부 분리 하중 등에 대하여 유도된 이론식이 실험 결과와 비교적 잘 일치하였다. 동일한 무게를 갖는 균질 판재와 비교하여 강도와 강성도면에서 월등하고 프레스 성형성도 우수할 것으로 평가되었다.

고속압밀법에 의해 제작된 유리섬유강화 PET 기지 복합재료의 최적제작조건 (Optimal Manufacturing Conditions of Glass Fiber Reinforced PET Matrix Composites by Rapid Press Consolidation Technique)

  • 이동주;신익재;김홍건
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.813-821
    • /
    • 2002
  • Glass fiber reinforced PET matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear and impact properties. In addition, the levels of crystallinity with various manufacturing conditions were measured using differential scanning calorimetry to investigate the mechanical properties of this composite material as a function of crystallinity. Among many processing parameters, the mold temperature and the cooling rate after forming were found to be the most critical factors in determining the level of crystallinity and mechanical properties. The level of crystallinity affects the tensile properties to some degree. However, impact properties are affected much more. It also affects the degree of ductility, which determines the impact energy of this material.

암석폐재의 고화체 합성기술의 개발과 파괴인성평가에 관한 연구 (Study on technique development for the solidified body of rock waste and evaluation of fracture toughness)

  • 나의균;유효선;김진용;이종기;정세희
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1452-1461
    • /
    • 1997
  • The hot press apparatus to obtain the solidified rocks with 60mm of diameter against rock waste was developed, and the optimum conditions for solidification were founded out, of which were 300.deg. C of temperature and 1hr of holding time. The solidified rocks reinforced with the fibers (carbon, steel) were made by means of a hydrothermal hot press method. Fracture toughness of those was obtained using the round compact tension(RCT) specimens. Load and displacement behaviours of the solidified rocks reinforced with the fibers were dependent upon the fiber volume fraction and kind of the fibers. Strength and fracture energy of the solidified rocks with steel were much larger than those of the solidified ones with carbon because of the Bridge's effect, multiple cracking and crack branching phenomena.