• Title/Summary/Keyword: Mechanical Pipe

Search Result 1,561, Processing Time 0.022 seconds

Structural Integrity Evaluation of Fuel Test Loop Submerged in Water Subjected to Postulated Pipe Rupture

  • Lee, Choon-Yeol;Kwon, Jae-Do;Lee, Yong-Son;Kim, Kil-Soo;Kim, Jun-Yeun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.215-225
    • /
    • 2000
  • The structural integrity of the fuel test loop (FTL) in a Korean experimental reactor is evaluated when the FTL, submerged in a water environment, is subjected to a postulated pipe rupture. The analyses are performed under static and dynamic conditions, imposing the thrust force history at each postulated pipe rupture section. Through analysis the following results are found: l) A double ended guillotine can not be expected based on the toughness of the material, 2) the structural integrity of the chimney surrounding the FTL would not impede the structural integrity by the pipe whip. All analyses are performed by finite element methods.

  • PDF

A Standard Study for Improving Thermal Performance of the Hot and Cold Water Pipe Insulation in Buildings (건물 냉난방수배관의 단열성능 향상을 위한 기준 연구)

  • Choi, Seung-Hyuck;Gim, Yu-Seung;Yun, Hi-won;Ryu, Hyung-Kyou
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.21-30
    • /
    • 2017
  • Recently, It has increased the importance of building energy saving. Pipe insulation as well as building envelope insulation is to improve energy efficiency and reduce the energy loss. However, there continues to use the old standard for pipe insulation that is one of the most important elements in energy savings in buildings. The purpose of this study is to propose suitable pipe insulation thickness for reducing building energy use. The study also reviews pipe insulation thickness standard in accordance to Korea standard, ASHRAE 90.1 and BS5422 and analyzed through thermal simulation. As a result, it is necessary to apply the performance design method of the pipe insulation thickness to reduce the energy loss of the piping.

Design of Pipe Expanding Die by Upper Bound Analysis and Finite Element Method (상계법과 유한요소법을 이용한 확관금형 설계)

  • Cho, Yong-Il;Kim, Seung-Hwan;Qiu, Yuan-gen;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.98-104
    • /
    • 2020
  • Pipe expansion involves various methods to enlarge the diameter of the pipes with the use of a mandrel or punch placed inside the pipe. In this study, the upper bound method was used to analyze the pipe expanding process as well as design a die. A kinematically admissible velocity field was derived for the upper bound analysis with the occurrence of pipe thinning during the expansion factored in. The analysis confirms that a semi-cone angle of the punch between 15ween pip is most advantageous for pipe expansion. The results of the upper bound analysis, which were also consistent with those of the FEM, can be useful for the design of a pipe expansion die.

Analysis of the Heat Transport Capacity of a Axial Grooved Heat Pipe for Solar Collector (태양열 집열기용 히트파이프의 열전달 특성에 대한 해석)

  • Chung, Kyung-Taek;Bae, Chan-Hyo;Suh, Jeong-Se;Kim, Byeong-Gi
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.317-322
    • /
    • 2005
  • This study is aimed to analyze the effects of heat pipe shape on the heat transfer in solar collector with a axial grooved heat pipe. In the design of a heat pipe. two of the most important criteria to be met are the operating temperature range and the maximum heat transport capacity, When the operating temperature range is known and the working fluid has been selected, the maximum heat transport capacity depends strongly on capillary pressure and liquid flow. The heat transport capacity of the heat pipe will depend on the geometry of the heat pipe, the wick structure. the vapor channel shape. groove number. cooling temperature. condenser length and pipe diameter. So various shapes are used for mathematical models of two-phase flow in grooved heat pipe. From the results. the adequate groove shape and scale are presented by considering the heat transport and capillary limitation.

  • PDF

A Study on Residual Stress Measurement Using Raman Spectroscopy (라만 분광법을 이용한 잔류응력 측정에 관한 연구)

  • Kang, Min-Sung;Kim, Sang-Young;Park, Soo;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • A straight pipe is used after complicated bending work in a mechanical system. In this work process, the plastic deformation of the pipe produces residual stress in the pipe. This residual stress significantly affects the behavior of pipe fracture. For this reason, residual stress must be evaluated. Measuring the residual stress of a U-shaped pipe is difficult with existing destructive and nondestructive measurement methods. In this paper, the residual stress of a U-shaped aluminum pipe (99.7% pure aluminum) was evaluated from the Raman shift by Raman spectroscopy and FEM(Finite Element Method, FEM) analysis. The results of the stiffness test by FEM analysis are compared with those by experiments. The analyzed results of the Raman spectra showed a similar tendency with the results of the FEM analysis with respect to the residual stress distributions in U-shaped pipes. Also, the results of the bending tests showed resemblance to each other.

Numerical evaluation of buried composite and steel pipe structures under the effects of gravity

  • Toh, William;Tan, Long Bin;Tse, Kwong Ming;Raju, Karthikayen;Lee, Heow Pueh;Tan, Vincent Beng Chye
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • In this paper, the response of an underground fibreglass reinforced plastic (FRP) composite pipe system subjected to realistic loading scenarios that may be experienced by an actual buried pipeline is investigated. The model replicates an arbitrary site with a length of buried pipeline, passing through a $90^{\circ}$ bend and into a valve pit. Various loading conditions, which include effects of pipe pressurization, differences in response between stainless steel and fibreglass composite pipes and severe loss of bed-soil support are studied. In addition to pipe response, the resulting soil stresses and ground settlement are also analysed. Furthermore, the locations of potential leakage and burst have also been identified by evaluating the contact pressures at the joints and by comparing stresses to the pipe hoop and axial failure strengths.

A Practical Approach for Optimal Design of Pipe Diameters in Pipe Network (배관망에서의 파이프 직경 최적설계에 대한 실용적 해법)

  • Choi Chang-Yong;Ko Sang-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.635-640
    • /
    • 2006
  • An optimizer has been applied for the optimal design of pipe diameters in the pipe flow network problems. Pipe network flow analysis, which is developed separately, is performed within the interface for the optimization algorithm. A pipe network is chosen for the test, and optimizer GenOpt is applied with Holder-Mead-O'Niell's simplex algorithm after solving the network flow problem by the Newton-Raphson method. As a result, optimally do-signed pipe diameters are successfully obtained which minimize the total design cost. Design cost of pipe flow network can be considered as the sum of pipe installation cost and pump operation cost. In this study, a practical and efficient solution method for the pipe network optimization is presented. Test system is solved for the demonstration of the present optimization technique.

Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

  • Soliman, Ahmed E.;Eltaher, Mohamed A.;Attia, Mohamed A.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.85-96
    • /
    • 2018
  • This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

Dynamic Behavior of Cracked Pipe Conveying Fluid with Moving Mass Based on Timoshenko Beam Theory

  • Yoon, Han-Ik;Son, In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2216-2224
    • /
    • 2004
  • In this paper we studied about the effect of the open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments i.e. the crack is modeled as a rotational spring. The influences of the crack severity, the position of the crack, the moving mass and its velocity, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the mid-span displacement of the simply supported pipe are depicted.

Vibration and Dynamic Stability of Pipes Conveying Fluid on Elastic Foundations

  • Ryu, Bong-Jo;Ryu, Si-Ung;Kim, Geon-Hee;Yim, Kyung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2148-2157
    • /
    • 2004
  • The paper deals with the vibration and dynamic stability of cantilevered pipes conveying fluid on elastic foundations. The relationship between the eigenvalue branches and corresponding unstable modes associated with the flutter of the pipe is thoroughly investigated. Governing equations of motion are derived from the extended Hamilton's principle, and a numerical scheme using finite element methods is applied to obtain the discretized equations. The critical flow velocity and stability maps of the pipe are obtained for various elastic foundation parameters, mass ratios of the pipe, and structural damping coefficients. Especially critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place, are precisely determined. Finally, the flutter configuration of the pipe at the critical flow velocities is drawn graphically at every twelfth period to define the order of the quasi-mode of flutter configuration.