• Title/Summary/Keyword: Mechanical Joining

Search Result 1,092, Processing Time 0.021 seconds

Joining Technology of Flat Panel Photobioreactor Case (평판형 광생물반응기 케이스 접합 기술)

  • Ahn, Dong-Gyu;Lee, Ho Jin;Ahn, Yeong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.154-163
    • /
    • 2013
  • Adhesive bonding and plastic welding have been widely used to join two plastic materials together. The goal of this paper is to determine a proper joining technology of a pair of flat panel (FP) photobioreactor (PBR) case. The material of the FP PBR case is polycarbonate (PC) plate. Two types of adhesion, including acryl adhesive and two-part epoxy adhesive, as well as two types of plastic welding technology, including ultrasonic welding and thermal welding, are employed for joining of PC plates. In order to influence of the adhesion and welding conditions on the joining characteristics of the PC plates in operational conditions of the FP PBR case, the morphology in the vicinity of the joined region as well as the water and pressure resistance characteristic are investigated. In addition, the variation of the bonding strength of the joined region and deformation behaviors in the vicinity of the joined region according to the adhesion and welding conditions is examined via the lap-shear test. From the results of basic experiments, proper joining technologies are chosen. Using the chosen joining technologies, the FP PBR case are fabricated to perform full-scale durability experiment. The results of the full-scale durability experiment have been shown that the chosen joining technologies can be applicable to fabricate the FP PBR case.

A Study on the Resistance Welding of Metallic Sandwich Panel : Part 1 - Determination of Process Parameters (저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 1 - 공정변수의 선정)

  • Lee Sang-Min;Kim Jin-Beom;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.49-54
    • /
    • 2005
  • Inner Structured and Bonded(ISB) panel, a kind of metallic sandwich panel, consists of two thin skin plates bonded to a micro-patterned inner structure. Its overall thickness is $1\~3mm$and it has attractive properties such as ultra-lightweight, high efficiency in stiffness-to-weight and strength-to-weight ratio. In many previous studies, resistance welding, brazing and adhesive bonding are studied for joining the panel. However these methods did not consider productivity, but focused on structural characteristics of joined panels, so that the joining process is very complicated and expensive. In this paper, a new joining process with resistance welding is developed. Curved surface electrodes are used to consider the productivity and the stopper is used between electrodes during welding time to maintain the shape of inner structure. Welding time, gap of electrodes and distance between welding points are selected as the process parameters. By measuring the tensile load with respect to the variation of welding time and gap of electrodes, proper welding conditions are studied. Welding time is proper between 1.5-2.5cycle. If welding time is too long, then inner structures are damaged by overheating. Gap of electrode should be shorter than threshold value fur joint strength, when total thickness of inner structure and skin plate is 3.3mm, the threshold distance is 3.0mm.