• 제목/요약/키워드: Mechanical Integrity

검색결과 790건 처리시간 0.022초

복합공구대용 B축 회전테이블 웜 기어의 정/동적 안정성 및 피로에 관한 연구 (A Study on the Static/Dynamic Stability and the Fatigue Damages for the Worm Gear in the B-Axis Rotary Table of a Mill Turret)

  • 김재실;강승희
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.107-115
    • /
    • 2014
  • Highly functional mill turrets have been developed and continuously improved to shorten the manufacturing time and enable multiple uses. Among these, a mill turret with B-axis rotary table was developed. The B-axis rotary table should be evaluated for structural integrity. Moreover, its worm and worm gear for transmitting power should be able to endure fatigue damage. Therefore, this article presents a structural analysis of this type of B-axis rotary table and confirms its static stability by comparing the stress results to the allowable stress levels. Next, the dynamic stability of the rotary table was investigated via a mode analysis and a harmonic analysis in a range determined by the results of a modal analysis. Finally, a worm gear set, the main part that drives the rotary table, is analyzed for fatigue and to estimate its lifetime. The results of the fatigue analysis allowed a prediction of the life of the worm gear set. The analytical results show that the B-axis rotary table has good structural integrity.

소형 수직축 풍력발전기의 내진검증 해석 (Seismic Qualification Analysis of a Vertical-Axis Wind Turbine)

  • 최영휴;홍민기
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

소형 승용차량의 측면충돌 시 탑승자 보호성능 평가 (Evaluation of Occupant Protection of Passenger Vehicles at IIHS Side Impact)

  • 김관희;임종훈;임장호;박인송;조종두
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.46-51
    • /
    • 2014
  • 2,097 deaths out of 5,229 by traffic accident occurred by vehicle to vehicle crash and 855 deaths out of 2,097 occurred at side crash in 2011. Korean government adopted New Car Assessment Program to reduce the wounded and deaths at traffic accident in 1999 and side impact test has been added in 2003. 43 out of 53 vehicles tested in NCAP side impact rated 4 and 5 stars means the highest occupant protection. In this study three small class vehicles have been tested according to Insurance Institute for Highway Safety's side crashworthiness test protocol. IIHS test protocol uses 1,500kg moving barrier rather than NCAP's 950kg and the occupant protection rated Good, Acceptable, Marginal and Poor based on injury measure, structural integrity and head protection.

원자력발전소의 Main Control Boards에 대한 내진 해석 (Seismic Analysis of the Main Control Boards for Nuclear Power Plant)

  • Byeon, Hoon-Seok;Lee, Joon-Keun;Kim, Jin-Young
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.498-498
    • /
    • 2001
  • Seismic qualification of the Main Control Boards for nuclear power plants has been performed with the guideline of AS ME Section III. US NRC Reg. Guide and IEEE 344 code. The analysis model of the Main Control Boards is consist of beam. shell and mass element by using the finite element method. and, at the same time. the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz. which is the upper frequency limit of the seismic load, the response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and functional integrity of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As all the combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, it concludes the Main Control Boards is dynamically qualified for seismic conditions. Although the authors had confirmed the structural and functional integrity of both Main Control Boards and all the component, in this paper only the seismic analysis of the Main Control Board is introduced.

  • PDF

발전설비 건전성평가를 위한 음향방출 비파괴검사 적용기술 - 제1편 : 음향방출 비파괴검사기술 이론(I) - (Nondestructive Testing and Applications for Integrity Assessment of Power Plant Facilities by Acoustic Emission Technology - Part 1 : The Theory of Acoustic Emission Technology(I) -)

  • 이상국
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.5-13
    • /
    • 2005
  • Acoustic emission(AE) is defined as the transient elastic waves thar are generated by the rapid release of energy. The advantage of AE is that very early crack growth can be detected well before a highly stressed component may fail. At present, an exact diagnosis is the most reliable means for determining the soundness of structures during power plant operations. AE monitoring has been applied successfully in power plants to determine mechanical problems, pressure vessel integrity and external valves leaks, vacuum leaks, the onset of cavitation in pumps and valves, the presence of flow(or no flow) in piping and heat exchange equipment, etc. Acoustic emission(AE) technology has recently strengthened its application base, and practitioners' understanding of the technique's fundamentals. This paper introduces the methods of a survey and assessment on AE monitoring applications in nuclear, fossil and hydraulic power plant. The main objective of this paper was to obtain information on various applications of AE technology in power plant.

  • PDF

Mechanical Properties of Cement Material for Energy-Foundation (EF) Structures

  • Park, Yong-Boo;Choi, Hang-Seok;Sohn, Jeong-Rak;Sim, Young-Jong;Lee, Chul-Ho
    • 토지주택연구
    • /
    • 제3권1호
    • /
    • pp.83-88
    • /
    • 2012
  • In this study, physical characteristics of cement and/or concrete materials that are typically used for energy-foundation (EF) structures have been studied. The thermal conductivity and structural integrity of the cement-based materials were examined, which are commonly encountered in backfilling a vertical ground heat exchangers, cast-in-place concrete piles and concrete lining in tunnel. For this purpose the thermal conductivity and unconfined compression strength of cement-based materials with various curing conditions were experimentally estimated and compared. Hydration heat generated from massive concrete in the cast-in-place concrete energy pile was observed for 4 weeks to estimate its dissipation time in the underground. The hydration heat may mask the in-situ thermal response test (TRT) result performed in the cast-in-place concrete energy pile. It is concluded that at least two weeks are needed to dissipate the hydration heat in this case. In addition, a series of numerical analysis was performed to compare the effect of thermal property of the concrete material on the cast-in-place pile.

A Study on the Evaluation Technology of Welds Integrity in Nuclear Power Plants

  • Chang, Hyun-Young;Kim, Jong-Sung;Jin, Tae-Eun
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.29-32
    • /
    • 2007
  • The final goal of this study is to develop the core technologies applicable to the design, operation and maintenance of welds in nuclear structures. This study includes predicting microstructure changes and residual stress for welded parts of nuclear power plant components. Furthermore, researches are performed on evaluating fatigue, corrosion, and hydrogen induced cracking and finally constructs systematically integrated evaluation system for structural integrity of nuclear welded structures. In this study, metallurgical and mechanical approaches have been effectively coordinated considering real welding phenomena in the fields of welds properties such as microstructure, composition and residual stress, and in the fields of damage evaluations such as fatigue, corrosion, fatigue crack propagation, and stress corrosion cracking. Evaluation techniques tried in this study can be much economical and effective in that it uses theoretical/semi-empirical but includes many additional parameters that can be introduced in real phenomena such as phase transformation, strength mismatch and residual stress. It is clear that residual stress makes great contribution to fatigue and stress corrosion cracking. Therefore the mitigation techniques have been approached by reducing the residual stress of selected parts resulting in successful conclusions.

Safety Assessment of a Metal Cask under Aircraft Engine Crash

  • Lee, Sanghoon;Choi, Woo-Seok;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.505-517
    • /
    • 2016
  • The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact loade-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident

  • Song, Chang Hyun;Bae, Joon Young;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2960-2973
    • /
    • 2022
  • Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.