• Title/Summary/Keyword: Mechanical Flexural Strength

Search Result 1,045, Processing Time 0.03 seconds

Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis (지르코니아 및 티타늄 임플란트를 사용한 지지골 및 임플란트 유지 수복물의 응력 분포 비교: 3차원 유한 요소 분석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.348-354
    • /
    • 2020
  • Purpose: Zirconia is differentiated from other ceramics because of its high resistance to corrosion and wear, excellent flexural strength (900~1400 MPa), and high hardness. Dental zirconia with proven mechanical/biological stability is suitable for the manufacture of implants. However, there are limited in vivo studies evaluating stress distribution in zirconia compared with that in titanium implants and studies analyzing finite elements. This study was conducted to evaluate the stress distribution of the supporting bone surrounding zirconia and titanium implants using the finite element analysis method. Methods: For finite element analysis, a single implant-supported restoration was designed. Using a universal analysis program, eight occlusal points were set in the direction of the occlusal long axis. The occlusal load was simulated at 700 N. Results: The zirconia implant (47.7 MPa) von Mises stress decreased by 5.3% in the upper cortical bone compared with the titanium implant (50.2 MPa) von Mises stress. Similarly, the zirconia implant (20.8 MPa) von Mises stress decreased by almost 4% in the cancellous bone compared with the titanium implant (21.7 MPa) von Mises stress. The principal stress in the cortical and cancellous bone exhibited a similar propensity to von Mises stress. Conclusion: In the supporting bone, the zirconia implant is able to reduce bone resorption caused by mechanically transferred stress. It is believed that the zirconia implant can be a potential substitute for the titanium implant by reinforcing aesthetic characteristics and improving stress distribution.

Comparison of Resin Impregnation and Mechanical Properties of Composites Based on Fiber Plasma Treatment (섬유 플라즈마 처리에 따른 복합재료의 수지 함침성 및 기계적 특성 비교)

  • Seong Baek Yang;Donghyeon Lee;Yongseok Lee;Dong-Jun Kwon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.388-394
    • /
    • 2023
  • In composites manufacturing, increasing resin impregnation is a key way to speed up the manufacturing process and improve product quality. While resin improvement is important, simple fiber surface treatments can also improve resin flowability. In this study, different plasma treatment times were applied to carbon fiber fabrics to improve the impregnation between resin and fiber. Electrical resistivity measurements were used to evaluate the dispersion of resin in the fibers, which changed with plasma treatment. The effect of fiber surface treatment on resin spreadability could be observed in real time. When inserting a carbon fiber tow into the resin, the amount of resin that soaked into the tow was measured to objectively compare resin impregnation. Five minutes of plasma treatment improved the tensile and compressive strength of the composite by more than 50%, while reducing the void content and increasing the fire point impregnation flow rate. Finally, a dynamic flexural fatigue test was conducted using a portion of the composite used as an architectural composite part, and the composite part did not fail after one million cycles of a 3 kN load.

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

Effect of h-BN Content on Microstructure and Mechanical Properties of Si3N4 (질화규소의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 김승현;이영환;조원승;김준규;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.867-873
    • /
    • 2003
  • $Si_{3}N_{4}$-BN based machinable ceramics were fabricated by hot-pressing at $1800^{\circ}C$ for 2 h under a pressure of 25 MPa. The microstructure, mechanical properties, and machinability were investigated. With increasing h-BN content from 5 vol% to 30 vol%, three point flexural strength decreased from 1000 MPa of monolithic S $i_3$ $N_4$ to 720~400 MPa. The fracture toughness, $K_{IC}$ , was decreased from 7.6 MPaㆍ$m^{1/2}$ of monolithic S $i_3$ $N_4$ to 6.5~4.1 MPaㆍ$m^{1/2}$. The grain size and aspect ratio of $\beta$-S $i_3$ $N_4$ slightly decreased with increasing h-BN content. S $i_3$ $N_4$ monolith could not be machined due to brittle fracture, but S $i_3$ $N_4$-BN based machinable ceramics could be machined without fracture, showing excellent machinability. With increasing h-BN content, the thurst force during cutting and micro-drilling process was decreased.

A Study on the Prolonged Time Heat Resistance of Shielding Materials Based on Modified and Novolac Type Epoxy Resin (개질 및 노블락형 에폭시수지 차폐재의 장기내열성에 관한 연구)

  • Cho, Soo-Haeng;Oh, Seung-Chul;Do, Jae-Bum;Ro, Seung-Gy;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.884-888
    • /
    • 1998
  • Effects of heating time under high temperature on the thermal and mechanical properties of neutron shielding materials based on modified (KNS-102), hydrogenated(KNS-106) bisphenol-A type epoxy resin and phenol-novolac(KNS-611) type epoxy resin for radioactive material shipping casks have been investigated. At early stages, the initial decomposition temperatures of the shielding materials of KNS-102, KNS-106 and KNS-611 increased with the heating time under high temperature, but it was rarely affected by the heating time in the later stages. In addition, the thermal conductivities of KNS-102 and KNS-106 decreased with heating time, but that of KNS-611 increased with the heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with increase of heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials of KNS-102 and KNS-611 increased with heating time, but those of KNS-106 decreased with increase of heating time. And the heating time under high temperature on the neutron shielding materials did not show measurable loss of weight and hydrogen content.

  • PDF

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.

A Study on the Physical Properties and Permeability of Permaeable Poly Concrete (투수성 폴리머 콘크리트의 물성과 투수성능에 관한 연구)

  • 박응모;조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.213-222
    • /
    • 1998
  • Covering polmer mortar as a filter for permeable polymer concrete on the base polymer concrete is nessary for good permeability from infiltration continuously. Therefore, three covering polymer mortars on the optimum base polymer concrete were cast immediatly following on the casting of the base polymer concrete. They are tested for compressive and flexural strengths, adhesion in tension, hardening shrinkage and permeability, and the effects of the mix proportioning factors on the properties of the permeable polymer concrete are discussed. From the test results, increase in the compressive strength and decrease in the coeffiecient of permeability of base polymer concrete are clearly obserbed with increasing filler-binder ratio. The base polymer concretes having a compressive strength of 9.4~28.3MPa and a coefficient of permeability of 0.12~1.93 cm/s can be produced in the consideration of the mix proportioning factors. Binder and filler contents in mix proportions had a great influence on the permeability of polymer concretes. The mechanical properties of permeable polymer concretes covered with polymer mortar using crushed stone are superior to other filters, and hardening shrinkage is the smallest in filters. It is apparent that adhesion between the base polymer concrete and polymer mortar is affected by the degree of hardening shrinkage. From this study, proper mix proportions can be recommended in the consideration of properties of the permeable polymer concrete.

A Study on the Reduced Rebound Method of Surface Finishing Spray Photocatalytic Mortar (표면 마감 광촉매 스프레이 모르타르의 리바운드량 저감 방안 연구)

  • Baek, Hyo-Seon;Park, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.604-609
    • /
    • 2020
  • There are various methods of finishing concrete surfaces, and when considering workability, the spray method is effective, but rebound occurs. The allocation of rebound occurrence control should be adjusted according to the materials used. Thus, a basic study was conducted on multiple techniques for reducing the rebound incidence that are suitable for surface finishing materials containing a photocatalyst. A prior study derived the reduction effect and optimal mix ratio for photocatalytic performance. Based on that study, the rebound reduction was verified according to the specifications of the content and the mechanical durability characteristics of the mixed materials. Rebound, compressive strength, flexural rigidity, and table flow tests were done. The flow was fixed at 170±10 mm considering the workability of the mortar spray equipment. For the experimental variables, the rebound number was adjusted to the silica sand variables relative to the cement weight, and silica sands No. 5 and No. 7 were used. The results show the highest compression strength in the final S-1 variable, and the amount of rebound was minimized. These results were sufficiently filled with the bindings of the silica pores, which increased the binding force between the aggregates, resulting in a lower amount of rebound.

Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag as an Aggregate (II) (Use of Polystyrene as a Shrinkage Reducing Agent) (아토마이징 제강 환원슬래그를 골재로 사용한 폴리머 콘크리트 복합재료의 특성(II) (폴리스티렌 수축저감재 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.380-385
    • /
    • 2014
  • Spherical atomizing reduction steel slag was prepared by atomizing technology using reduction steel slag (ladle furnace slag, LFS) generated from steel industry. In order to develop the mass-recycling technology of atomizing reduction steel slag, polymer concrete composite was prepared using spherical atomizing reduction steel slag instead of fine aggregate (river sand) and coarse aggregate (crushed aggregate), depending on the grain size. Different polymer concrete specimens were prepared with the various proportions of polymer binder and replacement ratios of atomizing reduction steel slag in order to investigate the characteristics of polymer concrete composite. Results showed that compressive strengths of polymer concrete specimens decreased with the increase of replacement ratios of atomizing reduction steel slag, but flexural strengths of the specimens showed a maximum strength at the 50% of replacement ratios of atomizing reduction steel slag. It was concluded that addition ratio of polymer binder, which affect greatly on the prime cost of production of polymer concrete, could be reduced by maximum 18.2 vol% because the workability of the polymer concrete was remarkably improved by using the atomizing reduction steel slag. However, further study is required because the mechanical strength of the specimen using atomizing reduction steel slag was greatly reduced in hot water resistance test.

Preparation and Properties of Zirconia-based Electrolytes from m-Zirconia and Yag Sol (m-지르코니아와 Yag 졸로부터 지르코니아계 전해질 제조 및 물성)

  • Kang, Keon-Taek;Han, Kyoung R.;Nam, Suk-Woo;Kim, Chang-Sam;Lee, Young-Soo;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.834-838
    • /
    • 2001
  • Attempts were made to improve mechanical properties of zirconia-based electrolyte by preparing yttria-stabilized cubic zirconia/alumina composite. It was performed by precipitating Yag precursor in aqueous m-zirconia slurry. The powder was separated and then followed by heat treatment with expecting yttria to react with m-$ZrO_2$ to give yttria stabilized zirconia and alumina to be dispersed homogeneously. When 17.8wt% Yag(6.3mol% $Y_2O_3$) was used, fracture toughness and strength were substantially improved from 1.44MPa${\cdot}m^{1/2}$ and 270Mpa for YZ8Y to 3.62MPa${\cdot}m^{1/2}$ and 447MPa respectively, but electrical conductivity at $^{\circ}$C in air was decreased from 0.126 to 0.057${\Omega}^{-1}cm^{-1}$. It seemed due to the presence of small amount of tetragonal zirconia. But when 21.58wt% Yag(8.0mol% $Y_2O_3$) was added, fracture toughness of 2.93MPa${\cdot}m^{1/2}$ and flexural strength of 388MPa were obtained with electrical conductivity of ${\Omega}^{-1}cm^{-1}$.

  • PDF