• 제목/요약/키워드: Mechanical Clearance

검색결과 388건 처리시간 0.023초

비폭파식 지뢰제거 시스템의 작업 깊이 제어 (Clearance Depth Control of Non-explosive Demining System)

  • 정해관;최현도;김상도;곽윤근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.749-754
    • /
    • 2004
  • Up to now, non-explosive demining system adaptable to a mobile robot has been developed. This system has much smaller platform and consists of non-explosive mechanism. Brief experiment indoors showed thai developed demining system can remove landmines well. But, out of doors, some problems are detected i.e. Inclination of overall system causes a suspension of rake rotation. In this research, a study on performance improvement of developed non-explosive demining system is mainly discussed. To compensate the inclination of the system, mechanical sensor composed of shaft and spring is used. This sensor gives a signal to a leadscrew motor and controls a rotating direction. From an experiment, it is confirmed that the mechanical sensor as stated is a good solution of the inclination of the system.

  • PDF

화학기계적 연마 가공에서의 윤활 특성 해석

  • 박상신;조철호;안유민
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.272-277
    • /
    • 1998
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer(work piece) and pad(tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

  • PDF

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • 허성필;양원호;정기현
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

크랭크 핀의 질량관성을 고려한 엔진 베어링의 틈새 거동 연구 (Study on the Dynamic Behaviors of Engine Bearing with the Inertia Effect of Crank Pin Journal)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제21권1호
    • /
    • pp.39-45
    • /
    • 2005
  • Investigation of the mass effect on the journal traces in the clearance of engine bearing has been performed for better design of mass distribution of crank system components such as crank pin, piston, con-rod, balance weight, crank throw weight, etc. as well as for better oil reaction behaviors to the applied forces from the cylinder pressures on the bearing. In this preliminary study, crank pin traces in the engine bearing clearance are computed by varying the equivalent magnitude of crank pin mass that includes the masses of crank pin, piston, con-rod. etc.. while most previous studies regarding journal traces in the bearing clearance neglect the inertia effects of crank pin mass. Although the inertia effect of pill mass is negligibly small compared to viscous force by ${\pi}bearing$ theory, it is found that it gives a great amount of influences on the journal traces in full bearing computation $(2\pi\;bearing\;theory)$ under the dynamic loading conditions.

팁간극 영역에서의 동익 표면 열부하 측정 (Measurement of Thermal Load in the Tip-Clearance Region of a Rotor Surface)

  • 이상우;권혁구;박진재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.187-192
    • /
    • 2003
  • The heat (mass) transfer characteristics in the tip-leakage flow region of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat transfer data in the tip-leakage flow area for the tip clearance-to-span ratio, h/s, of 2.0% are compared with those in endwall three-dimensional flow region without tip clearance (h/s = 0.0 %). The result shows that the thermal load in the tip-leakage flow region for h/s = 2.0% is more severe than that in the endwall flow region for h/s = 0.0%. The thermal loads even at the leading and trailing edges for h/s = 2.0% are found larger than those for h/s = 0.0%. The tip-leakage flow results in heat transfer augmentations near the tip on both pressure and suction sides in comparison with the mid-span results.

  • PDF

가중함수법에 의한 기계적 체결홀에 존재하는 타원호형: 관통균열의 음력확대계수 해석 (II) - 혼합모드 음력확대계수 해석 - (Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method (II) - Mixed-Mode Stress Intensity Factor Analysis -)

  • 허성필;양원호;류명해
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1671-1677
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks. The weight function method for elliptical arc through cracks at mechanical fastener holes has been developed and verified in the part I of this study. In part H, applying the weight function method, the effects of the amount of clearance on the mixed-mode stress intensity (actors are investigated and the change of crack shape is predicted from the analysis for various crack shapes. The stress intensity factors leer inclined crack are analyzed and critical angle at which mode I stress intensity factor becomes maximum is determined.

중수로 냉각재 펌프용 미케니컬 페이스 실의 성능 해석 (Performance Analysis of Mechanical Face Seal Used for Primary Heat Transport Pump in Heavy Water Reactor)

  • 김정훈;김동욱;김경웅
    • Tribology and Lubricants
    • /
    • 제27권5호
    • /
    • pp.240-248
    • /
    • 2011
  • Mechanical face seal installed in primary heat transport pump used for heavy water reactor prevents leakage of working fluid using thin working fluid film between primary seal ring and mating ring. If the leakage of working fluid exceeds the allowable volume, serious accident can be happened by the trouble of primary heat transport pump. The thinner fluid film exists between primary seal ring and mating ring, the less working fluid leaks out. On the other hand, if the thickness of fluid film is not enough, the life of mechanical face seal will be reduced by friction and wear. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the performance of mechanical face seals which have same deep straight groove and 11 different net coning values. As results, equilibrium clearance between primary seal ring and mating ring, leakage volume of working fluid, friction torque on sealing surface and stiffness of working fluid film were obtained. With increasing net coning value, equilibrium clearance and leakage volume increase, and friction torque and stiffness of fluid film decrease.

바이패스가 있는 히트 싱크의 열성능 최적화 (Thermal Optimization of a Straight Fin Heat Sink with Bypass Flow)

  • 김진욱;김상훈;김중년
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.179-184
    • /
    • 2010
  • 스트레이트 휜 히트 싱크가 장착된 공간에 팁 클리어런스(tip clearance)와 바이패스 유동이 열성능에 미치는 영향을 실험적으로 규명하고자 한다. 수평 및 수직 방향으로의 바이패스 유동에 의한 열성능 평가는 열식 질량 유량계(MFC)와 소형 풍동으로 이루어진다. 팁 클리어런스와 바이패스 유동에 의한 히트 싱크의 열성능은 열저항을 통하여 평가한다. 실험 결과, 스트레이트 휜 히트 싱크의 열저항은 팁 클리어런스가 증가함에 따라 점진적으로 증가하며, 유동 가이드 장치는 바이패스 유동을 감소하는 역할을 한다. 본 연구에서는 동일 유량 조건에서 히트 싱크의 입구에서 유동 가이드 장치까지의 거리에 따라 스트레이트 휜 히트 싱크의 최적값이 존재함을 확인하였다. 히트 싱크로 유입되는 유량이 증가함에 따라 유동 가이드 장치에 의한 열성능 개선 정도는 증가한다.

클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향 (Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission)

  • 류진석;성인하
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정 (Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors)

  • 정권종;황성호;백두산;김태영;김태호
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.