• 제목/요약/키워드: Mechanical Behavior Characteristics

Search Result 1,695, Processing Time 0.229 seconds

Tensile Characteristics and Behavior of Blood Vessels from Human Brain in Uniaxial Tensile Test

  • Suh, Chang-Min;Kim, Sung-Ho;Ken L. Monson;Werner Goldsmith
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1016-1025
    • /
    • 2003
  • The rupture of blood vessels in the human brain results in serious pathological and medical problems. In particular, brain hemorrhage and hematomas resulting from impact to the head are a major cause of death. As such, investigating the tensile behavior and rupture of blood vessels in the brain is very important from a medical point of view. In the present study, the tensile characteristics of the blood vessels in the human brain were analyzed using a quasi-static uniaxial tensile test, and the properties of the arteries and veins compared. In addition, to compare the tensile behavior and demonstrate the validity of the experimental results, blood vessels from the legs of pigs were also tested and analyzed. The overall results were in accordance with the histological structures and previous medical reports.

Analysis of the Impinging Spray Behavior Accompanying with Change of Phase (상변화를 동반한 충돌분무의 거동해석)

  • Song, Hong-Jong;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.852-859
    • /
    • 2000
  • The emission in the exhaust gas from diesel engine is effected by the fuel spray characteristics. The spray of D.I. diesel engine impinges on a piston cavity and a cylinder wall. It is very important to know exactly the distribution and behavior of the spray inside cylinder. The objective of this study is to develop more accurate evaporation model. The EPISO code was used to analyze the flow characteristics in the engine. The Wakil model and the Faeth model are applied to the EPISO code to analyze the behavior of impinging spray. And also experimental and numerical analysis were carried out. The spray behavior characteristics were investigated by changing injection pressure, ambient pressure and temperature. The behavior of impinging spray was strongly effected by the change of ambient pressure and temperature. The effects of evaporation and rebounding droplet should be considered.

Macroscopic Behavior and Atomization Characteristics of Dimethyl Ether (Dimethyl Ether(DME) 연료의 분무 거동 및 미립화 특성)

  • Suh, Hyun-Kyu;Park, Ji-Hong;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl Ether(DME) is an alternative fuel for diesel engine, it is renewable and offers potential reductions in emissions. This work was conducted to figure out the macroscopic behavior and the atomization characteristics of DME using a common-rail injection system. The macroscopic behavior was visualized with the spray visualization system composed of a Nd;YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer(PDPA) system. In this study, it was revealed that the macroscopic behavior and the atomization characteristics of DME are similar compared with commercial diesel fuel. However, DME fuel has a shorter spray tip penetration and a small SMD due to the effect of evaporation characteristics.

The Characteristics for the Electrostatically Actuated z-Shaped Laterally Driven MEMS Switch (정전 구동 수평 거동 z-형 MEMS 스위치의 특성)

  • Hong, Young-Tack;Oh, Jae-Geun;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2233-2235
    • /
    • 2000
  • We present the characteristics of microwave and mechanical behavior for the electrostatically actuated z-shaped laterally driven micriomachined CPW SPST(Single Pole Single Throw) Switch, which is for the application of the microwave communication systems. In this paper, we have aimed to maintain advantages. such as low insertion loss and low power consumption that the previously developed RF MEMS Switch has and minimize also stiction problem. enhance the microwave characteristics by etching of substrate beneath the switch, realize the pull-in voltage of below 30V. The optimized design parameters of the MEMS Switch can be selected by the analysis of the mechanical behavior and the use of ANSYS simulation method.

  • PDF

A Numerical Analysis of Dynamic Behavior of Rock Mass with Intense Discontinuities (절리의 방향성을 고려한 암반의 동적거동 수치해석)

  • Ha, Tae-Wook;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.394-404
    • /
    • 2006
  • Dynamic behavior of rock structures depends largely on the dynamic characteristics of ground and input earthquake wave. For blocky rocks with intense discontinuities, the mechanical characteristics of blocks and structural and mechanical characteristics of discontinuities affect overall behavior. In this study, UDEC was adopted to evaluate the dynamic behavior of rocks with various structural characteristics. Obtained results were compared to those of $FLAC^{2D}$, a continuum analysis, and the validity of the method was examined for dynamic analysis of discontinuous rocks for earthquake. Analysis considering the discontinuity showed significant changes in structural shape by the influence of joint behavior, and the behavior by continuum analysis was overestimated.

Prediction of residual mechanical behavior of heat-exposed LWAC short column: a NLFE model

  • Obaidat, Yasmeen T.;Haddad, Rami H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.265-280
    • /
    • 2016
  • A NLFE model was proposed to investigate the mechanical behavior of short columns, cast using plain or fibrous lightweight aggregate concrete (LWAC), and subjected to elevated temperatures of up to $700^{\circ}C$. The model was validated, before its predictions were extended to study the effect of other variables, not studied experimentally. The three-dimensional NLFE model was developed using ANSYS software and involved rational simulation of thermal mechanical behavior of plain and fibrous LWAC as well as longitudinal and lateral steel reinforcement. The prediction from the NLFE model of columns' mechanical behavior, as represented by the stress-strain diagram and its characteristics, compared well with the experimental results. The predictions of the proposed models, considering wide range of lateral reinforcement ratios, confirmed the behaviors observed experimentally and stipulated the importance of steel confinement in preserving post-heating mechanical properties of plain and fibrous LWAC columns, being subjected to high temperature.

THE WELDABILITY AND MECHANICAL BEHAVIOR OF MEDIUM CARBON STEEL IN CW Nd:YAG LASER WELDING

  • Bang, Han-Sur;Kim, Young-Pyo;Seiji Katayama;Chang, Woong-Seong;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.626-631
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. ill general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAG laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

The Weldability and Mechanical Behavior of Medium Carbon Steel in CW Nd:YAG Laser Welding

  • Bang, H.S.;Kim, Y.P.;Katayama, S.;Chang, W.S.;Lee, C.W.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. In general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAC laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

Analysis of Correlation Between Velocity of Elastic Wave and Mechanical Properties of Rocks (암석의 탄성파속도 거동특성과 역학 parameter와의 상관성 해석)

  • Lee, Jong-Suok;Moon, Jong-Kyu;Choi, Woong-Eui
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.50-65
    • /
    • 2011
  • Analysis of correlation and behavior characteristics at elastic wave velocity have studied on Korean rock data after checking population size and Chi-square method. Behavior characteristics are quite different from each rock and mechanical parameters at elastic wave velocity. This study shows it is necessary to analize correlation to rock behavior characteristics for correct answer from natural rock.

A FEM Analysis of Dynamic Behavior for a Slider with Ultra-Thin Air-Film

  • Lim, S.K.;Rhim, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.243-244
    • /
    • 2002
  • New type slider with optical components is coming on market for portable and high capacity drive, and it shows great potential in future high performance drive. It is very important that a slider should have a good dynamic behavior. In this paper the dynamic behavior and static characteristics of slider have been investigated numerically by in-house simulation code using FEM.

  • PDF