• Title/Summary/Keyword: Meat production

Search Result 1,338, Processing Time 0.022 seconds

Associations between gene polymorphisms and selected meat traits in cattle - A review

  • Zalewska, Magdalena;Puppel, Kamila;Sakowski, Tomasz
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1425-1438
    • /
    • 2021
  • Maintaining a high level of beef consumption requires paying attention not only to quantitative traits but also to the quality and dietary properties of meat. Growing consumer demands do not leave producers many options for how animals are selected for breeding and animal keeping. Meat and carcass fatness quality traits, which are influenced by multiple genes, are economically important in beef cattle breeding programs. The recent availability of genome sequencing methods and many previously identified molecular markers offer new opportunities for animal breeding, including the use of molecular information in selection programs. Many gene polymorphisms have thus far been analyzed and evaluated as potential candidates for molecular markers of meat quality traits. Knowledge of these markers can be further applied to breeding programs through marker-assisted selection. In this literature review, we discuss the most promising and well-described candidates and their associations with selected beef production traits.

Potential of combining natural-derived antioxidants for improving broiler meat shelf-life - A review

  • Andiswa Ntonhle Sithole;Vuyisa Andries Hlatini;Michael Chimonyo
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1305-1313
    • /
    • 2023
  • Synthetic antioxidants have shown adverse effects on consumers. The review, thus, aims to assess the effect of marinating broiler meat with plant leaves-derived antioxidants potential for improving shelf-life and human health. Broiler meat loss and waste due to spoilage is more than three million kg annually, thus, extending shelf-life by reducing initial microbial load and autoxidation is essential. Adding various antioxidants would reduce oxidation of protein and fatty acids improving nutritional shelf-life through synergic interactions. Antioxidant synergetic effects also improves reduction in microbiota proliferation leading to the delayed development of off flavours and deterioration of meat colour. To reduce initial microbial load and autoxidation effects, the inclusion of polyphenols and antioxidants from varying sources by mixing various antioxidants would lead to improved synergic effects.

Current Research, Industrialization Status, and Future Perspective of Cultured Meat

  • Seung Hyeon Yun;Da Young Lee;Juhyun Lee;Ermie Mariano Jr;Yeongwoo Choi;Jinmo Park;Dahee Han;Jin Soo Kim;Sun Jin Hur
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.326-355
    • /
    • 2024
  • Expectations for the industrialization of cultured meat are growing due to the increasing support from various sectors, such as the food industry, animal welfare organizations, and consumers, particularly vegetarians, but the progress of industrialization is slower than initially reported. This review analyzes the main issues concerning the industrialization of cultured meat, examines research and media reports on the development of cultured meat to date, and presents the current technology, industrialization level, and prospects for cultured meat. Currently, over 30 countries have companies industrializing cultured meat, and around 200 companies that are developing or industrializing cultured meat have been surveyed globally. By country, the United States has over 50 companies, accounting for more than 20% of the total. Acquiring animal cells, developing cell lines, improving cell proliferation, improving the efficiency of cell differentiation and muscle production, or developing cell culture media, including serum-free media, are the major research themes related to the development of cultured meat. In contrast, the development of devices, such as bioreactors, which are crucial in enabling large-scale production, is relatively understudied, and few of the many companies invested in the development of cultured meat have presented products for sale other than prototypes. In addition, because most information on key technologies is not publicly available, it is not possible to determine the level of technology in the companies, and it is surmised that the technology of cultured meat-related startups is not high. Therefore, further research and development are needed to promote the full-scale industrialization of cultured meat.

Comparison of Carcass Characteristics, Meat Quality, and Blood Parameters of Slow and Fast Grown Female Broiler Chickens Raised in Organic or Conventional Production System

  • Comert, Muazzez;Sayan, Yilmaz;Kirkpinar, Figen;Hakan Bayraktar, O.;Mert, Selim
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.987-997
    • /
    • 2016
  • The objective of the study was to compare the carcass characteristics, meat quality, and blood parameters of slow and fast grown female broiler chickens fed in organic or conventional production system. The two genotypes tested were medium slow-growing chickens (SG, Hubbard Red JA) and commercial fast-growing chickens (FG, Ross 308). Both genotypes (each represented by 400 chickens) were divided into two sub-groups fed either organic (O) or conventional (C) systems. Chickens of each genotype and system were raised in a semi environmentally controlled poultry house until 21 d of age and were assigned to 5 pens of 40 chickens each. Then, O system chickens were transferred into an open-side poultry house with an outdoor run. At 81 d of age, 10 female chickens from each genotype and from each production system (n = 40) were randomly chosen to provide material for analysis, and were weighed and brought to the slaughterhouse to assess carcass characteristics and meat quality. The blood parameters were determined by using 5 female chickens from each genotype and from each production system (n = 20). FG had the higher live weight, along with carcass, breast, and thigh-drumstick weights compared to SG (p<0.05). FG had the higher breast yield, whereas SG had the higher thigh-drumstick yield (p<0.05). The O system resulted in a higher amount of abdominal fat (p<0.05). In addition, the O system values were higher for dry matter, crude ash, crude protein, and $pH^{15}$ values in breast meat, and for crude ash, crude protein, and $pH^{15}$ values in drumstick meat (p<0.05). In addition, total saturated fatty acids, total mono-unsaturated fatty acids, and total omega 3 were significantly higher in the O system than in the C system. Thus, the O system showed a positive advantage compared to the C system regarding female chicken meat quality, primarily within the ash, protein, and total omega 3 fatty acid profiles. In conclusion, the present study indicated that the main factor affecting the carcass characteristics of female chickens was genotype, whereas the organic system contributed to enhanced meat quality. These findings provide a better understanding of the relative roles of genotype and production systems in female broiler characteristics, and might aid producers in designing their facilities to optimize yield and quality while maintaining acceptable animal welfare standards.

Modern Concepts of Restructured Meat Production and Market Opportunities

  • Abdul Samad;AMM Nurul Alam;Swati Kumari;Md. Jakir Hossain;Eun-Yeong Lee;Young-Hwa Hwang;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.284-298
    • /
    • 2024
  • Restructured meat (RM) products are gaining importance as an essential component of the meat industry due to consumers' interest in health benefits. RM products imply the binding or holding of meat, meat by-products, and vegetable proteins together to form a meat product with meat's sensory and textural properties. RM products provide consumers with diversified preferences like the intake of low salt, low fat, antioxidants, and high dietary fiber in meat products. From the point of environmental sustainability, RM may aid in combining underutilized products and low-valued meat by adequately utilizing them instead of dumping them as waste material. RM processing technique might also help develop diversified and new hybrid meat products. It is crucial to have more knowledge on the quality issues, selection of binding agents, their optimum proportion, and finally, the ideal processing techniques. It is observed in this study that the most crucial feature of RM could be its healthy products with reduced fat content, which aligns with the preferences of health-conscious consumers who seek low-fat, low-salt, high-fiber options with minimal synthetic additives. This review briefly overviews RM and the factors affecting the quality and shelf life. Moreover, it discusses the recent studies on binding agents in processing RM products. Nonetheless, the recent advancements in processing and market scenarios have been summarized to better understand future research needs. The purpose of this review was to bring light to the ways of sustainable and economical food production.

Effect of Single Nucleotide Polymorphisms of Acetyl-CoA Carboxylase α(ACACA) Gene on Carcass Traits in Hanwoo (Korean Cattle)

  • Shin, Sung-Chul;Heo, Jae-Pil;Chung, Eui-Ryong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.744-751
    • /
    • 2011
  • Meat production and quality traits in beef cattle are largely affected by genetic factors. Acetyl-Coenzyme A carboxylase-${\alpha}$ (ACACA) plays a key role in the regulation and metabolism of fatty acid biosynthesis in mammalian animals. The gene encoding ACACA enzyme was chosen as a candidate gene for carcass and meat traits. In this study, we investigated effects of single nucleotide polymorphisms (SNPs) in the ACACA gene on beef carcass and meat traits in Hanwoo (Korean cattle) populations. We have sequenced a fragment of intron I region of the Hanwoo ACACA gene and identified two SNPs. Genotyping of the two SNP markers (g.2344T>C and g.2447C>A) was carried out using PCR-SSCP analysis in 309 Hanwoo steers to evaluate their association with carcass and meat production traits. The g.2344C SNP marker showed a significant increasing effect on LW (p = 0.009) and CW (p = 0.017). Animals with the CC genotype had higher CW and LW compared with TT and TC genotypes (p<0.05). The g.2447A SNP marker was associated with higher MC (p = 0.019). Animals with the AA genotype had higher MC than animals with CC and CA genotypes (p<0.05). Although the degree of linkage disequilibrium (LD) was not strong between g.2344T>C and g.2447C>A in the LD analysis, four major haplotype classes were formed with two SNP information within the ACACA gene. We constructed haplotypes using the HaploView software package program and analyzed association between haplotypes and carcass traits. The haplotype of ACACA gene significantly affected the LW (p = 0.027), CW (p = 0.041) and MC (p = 0.036). The effect of h1 haplotype on LW and CW was larger than that of h3 haplotype. Animals with the h1 haplotype also had greater MC than did animals with h2 haplotype. Consequently, the ACACA gene could be useful as a DNA marker for meat production traits such as carcass yield and meat contents in Hanwoo.

Cooked broiler meat quality affected by different Mediterranean medicinal plants in the diet

  • AL-Hijazeen, Marwan A.;AL-Rawashdeh, Mustafa S.;Al-Rabadi, Ghaid J.
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.290-298
    • /
    • 2022
  • Objective: This study was conducted to investigate the effects of adding oregano (Origanum syriacum L.) and germander (Teucrium polium L.) to poultry diets individually and/or in combination: i) on cooked chicken meat quality and storage stability, ii) to compare this effect with those of the synthetic antioxidant butylated hydroxyanisole (BHA) and with the normal basic diet (Control: without supplements). Methods: Broilers (140 birds) were raised for 21 days and then equally divided into five different treatment groups of 28 birds each. The dietary treatments were as follows: i) control; ii) germander (GER, 1.5%); iii) oregano (ORE, 2.5%); iv) combination of GER and ORE (CM, 1.5%, and 2.5%); v) BHA (0.02%). Meat patties from the five treatments were prepared, cooked, and stored at 4℃ prior to analysis. During storage, samples were measured for thiobarbituric acid-reactive substances (TBARS) and total carbonyl levels at 0, 4, and 7 days. In addition, cooked thigh meat was prepared separately to evaluate cooking loss and sensory attributes. Results: The CM dietary treatment showed the highest antioxidant effect, with decreasing TBARS values (breast and thigh meat) throughout the storage time (4 to 7 days). Furthermore, ORE showed a higher antioxidant effect, decreasing the rancidity development (TBARS values), compared to the GER during the storage period (days 0 to 7). The anti-carbonyl effect of the CM supplement was the highest among all treatments from day 0 to 7. Generally, the antioxidant effect of GER was lower compared to that of ORE and BHA alone. The CM treatment most significantly decreased off-odor and rancidity development, with the lowest oxidation odor scores. Conclusion: The results indicate that the combination of oregano and germander in the diet of boilers improves meat quality and prolongs shelf life.

Exploring effects of different male parent crossings on sheep muscles and related regulatory genes using mRNA-Seq

  • Shi, Jinping;Zhang, Quanwei;Song, Yali;Lei, Zhaomin;Fu, Lingjuan;Cheng, Shuru
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1129-1140
    • /
    • 2022
  • Objective: With improvements in living standards and increase in global population, the demand for meat products has been increasing; improved meat production from livestock could effectively meet this demand. In this study, we examined the differences in the muscle traits of different male crossbred sheep and attempted to identify key genes that regulate these traits. Methods: Dubo sheep×small-tailed Han sheep (DP×STH) and Suffolk×small-tailed Han sheep (SFK×STH) were selected to determine meat quality and production performance by Masson staining. Transcriptome sequencing and bioinformatic analysis were performed to identify differentially expressed genes (DEGs) related to meat quality. The presence of DEGs was confirmed by real-time polymerase chain reaction. Results: The production performance of SFK×STH sheep was better than that of DP×STH sheep, but the meat quality of DP×STH sheep was better than that of SFK×STH sheep. The muscle fiber diameter of DP×STH sheep was smaller than that of SFK×STH sheep. Twenty-two DEGs were identified. Among them, four gene ontology terms were related to muscle traits, and three DEGs were related to muscle or muscle fibers. There were no significant differences in the number of single nucleotide mutations and mutation sites in the different male parent cross combinations. Conclusion: This study provides genetic resources for future sheep muscle development and cross-breeding research.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

FRESH COCONUT MEAT IN POULTRY RATIONS

  • Cocjin, B.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 1991
  • Almost 1/4 of all the coconuts in the world is produced in the Philippines. During periods of high supply of coconuts it would be better to feed coconut meat to farm animals for conversion into meat and eggs. Three studies were conducted at the Visayas State College of Agriculture, Baybay, Leyte, Philippines from April, 1983 to April, 1985 to determine the response of Mallard ducks, Muscovy ducks and broilers to fresh coconut meat supplementation in their diets. Results showed that Mallard ducks on ration with coconut meat performed similarly with those on ration without coconut meat. Feed cost per dozen eggs was reduced by 28-30% with coconut meat. Feed cost per unit gain of muscovy ducks was reduced by 32-37% by coconut meat supplementation. With broilers, feed conversion, gain in weight and breast weight were significantly improved by coconut meat supplementation. Return-above-feed cost increased with increasing level of coconut meat in the ration.