Exploring effects of different male parent crossings on sheep muscles and related regulatory genes using mRNA-Seq |
Shi, Jinping
(College of Animal Science and Technology, Gansu Agricultural University)
Zhang, Quanwei (College of Life Science and Biotechnology, Gansu Agricultural University) Song, Yali (College of Animal Science and Technology, Gansu Agricultural University) Lei, Zhaomin (College of Animal Science and Technology, Gansu Agricultural University) Fu, Lingjuan (College of Animal Science and Technology, Gansu Agricultural University) Cheng, Shuru (College of Animal Science and Technology, Gansu Agricultural University) |
1 | Cheng S, Wang X, Zhang Q, et al. Comparative transcriptome analysis identifying the different molecular genetic markers related to production performance and meat quality in longissimus dorsi tissues of MG × STH and STH sheep. Genes 2020;11:183. https://doi.org/10.3390/genes11020183 DOI |
2 | Wang J, Zhou X, Zhu J, et al. GO-Function: Deriving biologically relevant functions from statistically significant functions. Brief Bioinform 2012;13:216-27. https://doi.org/10.1093/bib/bbr041 DOI |
3 | Chen S, Yongyu L, Yijie Z, et al. iTRAQ and RNA-Seq analyses revealed the effects of grafting on fruit development and ripening of oriental melon (Cucumis melo L. var. makuwa). Gene 2021;766:145142. https://doi.org/10.1016/j.gene.2020.145142 DOI |
4 | Gu B, Liu H, Han Y, Chen Y, Jiang H. Integrated analysis of miRNA and mRNA expression profiles in 2-6 and 12-month-old small tail han sheep ovaries reveals that Oar-miR-432 downregulates RPS6KA1 expression. Gene 2019;710:76-90. https://doi.org/10.1016/j.gene.2019.02.095 DOI |
5 | Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc 2012;7:562-78. https://doi.org/10.1038/nprot.2012.016 DOI |
6 | Miao X, Qin QL. Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and small tail Han sheep to explore the regulation of fecundity. Mol Cell Endocrinol 2015;402:32-42. https://doi.org/10.1016/j.mce.2014.12.023 DOI |
7 | Gabryszuk M, Kuznicka E, Horbanczuk K, Oprzadek J. Effects of housing systems and the diet supplements on the slaughter value and concentration of mineral elements in the loin muscle of lambs. Asian-Australas J Anim Sci 2014;27:726-32. https://doi.org/10.5713/ajas.2013.13654 DOI |
8 | Laslowski A. A modified silver methenamine masson trichrome stain using methyl green for staining of renal biopsies. J Histotechnol 2016;39:66-71. https://doi.org/10.1179/2046023615Y.0000000012 DOI |
9 | Minoru K, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008;36:480-4. https://doi.org/10.1093/nar/gkm882D480-4 DOI |
10 | Li M, Hakonarson H, Wang K. ANNOVAR functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/nar/gkq603 DOI |
11 | Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63. https://doi.org/10.1038/nrg2484 DOI |
12 | Ju J, Mittal GS. Relationships of physical properties of fatsubstitutes, cooking methods and fat levels with quality of ground beef patties. J Food Process Preserv 2000;24:125-42. https://doi.org/10.1111/j.1745-4549.2000.tb00409.x DOI |
13 | Wei Z-W, Shao-Shu L, Pan Y, et al. Expression of EGR1 gene and location of EGR1 protein in differentiation of bovine skeletal muscle-derived satellite cells. Chinese J Appl Physiol 2019;35:5-8. https://doi.org/10.12047/j.cjap.5709.2019.002 DOI |
14 | Shi J, Wang X, Song Y, Liu T, Cheng S, Zhang Q. Excavation of genes related to the mining of growth, development, and meat quality of two crossbred sheep populations based on comparative transcriptomes. Animals 2021;11:1492. https://doi.org/10.3390/ani11061492 DOI |
15 | Cheng S, Wang X, Wang Q, Yang L, Shi J, Zhang Q. Comparative analysis of longissimus dorsi tissue from two sheep groups identifies differentially expressed genes related to growth, development and meat quality. Genomics 2020;112:3322-30. https://doi.org/10.1016/j.ygeno.2020.06.011 DOI |
16 | Lu P, Yue W, Jiang W, et al. Protein requirements of Dorper sheep x small tail Han sheep F1 lambs. J Anim Vet Adv 2012;11:3738-43. |
17 | Zhang J-H, He-Guo L-I. Improvement effect of small-tail han sheep by using Suffolk. J Anim Sci Vet Med 2016. |
18 | Sarandol E, Eker SS, Sarandol A. Crossbreeding in sheep and goat production Savjetovanje. Savjetovanje Uzgajivaa Ovaca Koza Repub Hrvatskoj Zb Radova 2013;2:67-73. |
19 | Leymaster KA, Jenkins TG. Characterization of accretive rates for growth constituents in male suffolk sheep. J Anim Sci 1985;61:430-5. https://doi.org/10.2527/jas1985.612430x DOI |
20 | Zhang C, Wang G, Wang J, et al. Characterization and comparative analyses of muscle transcriptomes in Dorper and small-tailed Han sheep using RNA-Seq technique. PLOS ONE 2013;8:e72686. https://doi.org/10.1371/journal.pone.0072686 DOI |
21 | Qian Z, Kang Y, Wang HY, et al. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development. Sci Rep 2016;6. |
22 | Rudnicki MA, Jaenisch R. The MyoD family of transcription factors and skeletal myogenesis. BioEssays 1995;17:203-9. https://doi.org/10.1002/bies.950170306 DOI |
23 | Miao X, Luo Q, Qin X, Guo Y, Zhao H. Genome-wide mRNA-Seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of small tail Han than Dorset sheep. Biochem Biophys Res Commun 2015;467:413-20. https://doi.org/10.1016/j.bbrc.2015.09.129 DOI |
24 | Cloete SW, Snyman MA, Herselman MJ. Productive performance of Dorper sheep. Small Rumin Res 2000;36:119-35. https://doi.org/10.1016/s0921-4488(99)00156-x DOI |
25 | Ye Y, Schreurs NM, Johnson PL, et al. Carcass characteristics and meat quality of commercial lambs reared in different forage systems. Livest Sci 2020;232. https://doi.org/10.1016/j.livsci.2019.103908 DOI |
26 | Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011;27:2325-9. https://doi.org/10.1093/bioinformatics/btr355 DOI |
27 | Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36 DOI |
28 | Ptacek M, Jaromir D, Jitka S, et al. Response to selection of a breeding program for Suffolk sheep in the Czech Republic. Czech J Anim Sci 2018;63:305-12. https://doi.org/10.17221/21/2018-CJAS DOI |
29 | Giorgis K-H. Productive performance evaluation of Dorper sheep and its F1 at Areka Agricultural Research Centre Mente Dubo Breed Evaluation and Distribution Site Southern Ethiopia. J Biol Agric Healthc 2017;7. |
30 | Miao X, Luo Q, Qin X, Guo Y, Zhao H. Genome-wide mRNA-Seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of small tail Han than Dorset sheep. Biochem Biophys Res Commun 2015;467:413-20. DOI |
31 | Przysucha T, Grodzki H, Golebiewski M, et al. Evaluation of the performance of Scottish highland beef cattle in Poland. Med Weter 2013;69:252-4. https://doi.org/10.1111/jsap.12028 DOI |
32 | Qiu H, Xu X, Fan B, Rothschild MF, Martin Y, Liu B. Investigation of LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2. Mol Biol Rep 2010;37:629-36. https://doi.org/10.1007/s11033-009-9882-y DOI |
33 | Cighi V, Oroian T, Sichet C. Results concerning the growing dynamics in young sheep hybrid Laitier BELGE x TSIGAI and TSIGAI, from lambing to weaning. Lucrari Stiint. Zootehnie Biotecnol 2013;2:224-8. |
34 | Zhang WW, HuiLi T, ZiHeng Z, et al. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol 2018;233:350-62. https://doi.org/10.1002/jcp.25883 DOI |
35 | Jinsol J, Choi KH, Kim SH, et al. Combination of cell signaling molecules can facilitate MYOD1-mediated myogenic transdifferentiation of pig fibroblasts. J Anim Sci Biotechnol 2021;12:64. https://doi.org/10.1186/s40104-021-00583-1 DOI |
36 | Bhuiyan MSA, Kim NK, Cho YM, et al. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest Sci 2009;126:292-7. https://doi.org/10.1016/j.livsci.2009.05.019 DOI |
37 | Hu X, Wang H, Li K, Wu Y, Liu Z, Huang C. Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears. Sci Rep 2017;7:16130. https://doi.org/10.1038/s41598-017-15985-3 DOI |
38 | Cheng X, Zhao SG, Yue Y, Liu Z, Li HW, Wu JP. Comparative analysis of the liver tissue transcriptomes of Mongolian and Lanzhou fat-tailed sheep. Genet Mol Res 2016;15:15.e15028572. https://doi.org/10.4238/gmr.15028572 DOI |
39 | Yuqing C, Guiqiong L, Girmay S, et al. Novel mutations in the signal transducer and activator of transcription 3 gene are associated with sheep body weight and fatness traits. Mamm Genome Off J Int Mamm Genome Soc 2021;32. https://doi.org/10.1007/s00335-020-09850-4 DOI |
40 | Cheng S, Wang X, Zhang Q, et al. Comparative transcriptome analysis identifying the different molecular genetic markers related to production performance and meat quality in longissimus dorsi tissues of MG × STH and STH sheep. Genes 2020;11:183. https://doi.org/10.3390/genes11020183 DOI |