• Title/Summary/Keyword: Meat Production Potential

Search Result 161, Processing Time 0.023 seconds

Effects of dietary lycopene on the protection against oxidation of muscle and hepatic tissue in finishing pigs

  • Fachinello, Marcelise Regina;Gasparino, Eliane;Monteiro, Alessandra Nardina Triccia Rigo;Sangali, Cleiton Pagliari;Partyka, Andre Vinicius Sturzenegger;Pozza, Paulo Cesar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1477-1486
    • /
    • 2020
  • Objective: The objective of this study was to evaluate the effect of different levels of lycopene supplementation on the carcass traits, meat quality, concentration of lipid oxidation products and antioxidant potential in the meat and liver of finishing barrows and gilts. Methods: A total of 40 barrows and 40 gilts were allotted in a completely randomized block design, arranged in a 2×5 factorial scheme, consisting of two sexes (barrows and gilts) and five dietary levels of lycopene (0, 12.5, 25.0, 37.5, and 50.0 mg/kg). In addition, four storage times (0, 24, 48, and 72 h), at 4℃, were added to the model to evaluate the longissimus lumborum muscle. Results: An interaction (p = 0.010) was observed between storage periods and dietary lycopene levels. The unfolding of the interaction (lycopene×period) showed a decreasing concentration of malondialdehyde concentration as the dietary lycopene increased, at all storage periods. No interactions (p>0.050) were observed for the 2,2 diphenyl 1 picrylhydrazyl (DPPH) in the pork. However, the percentage of DPPH radical inhibition reduced (p = 0.001) up to 72 h. Additionally, there was a linear increase (p = 0.001) in the capture of DPPH radicals by antioxidants, as the dietary lycopene increased. No interactions were observed (p>0.05) between the evaluated factors in liver. However, lipid oxidation was reduced by supplementing lycopene in pig diets. The capture of the DPPH radical, resulted increase in the antioxidant power exerted by lycopene in the liver (p = 0.001). The concentrations of the thiobarbituric acid reactive substances and DPPH in the liver were affected by sex (p = 0.001). Conclusion: Dietary supplementation of lycopene reduced the water loss during thawing and was effective in protecting against oxidation of the longissimus lumborum muscle and liver until 72 hours of storage, and the best results were obtained by supplementing with 50.0 mg of lycopene/kg of diet.

Control of Microbial Shelf Life of Perishable Food by Real-Time Monitoring of $CO_2$ Concentration of its Package (변패성 식품의 포장 내 $CO_2$ 농도의 실시간적 측정에 의한 미생물적 저장수명 제어)

  • Kim, Hwan-Ki;An, Duck-Soon;Lee, Hyuk-Jae;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.2
    • /
    • pp.33-37
    • /
    • 2011
  • Real time control logic of microbial shelf life of a perishable food, seasoned pork meat has been formulated which exploits monitoring of $CO_2$ concentration of the package. The potential of the proposed logic was examined for storage at dynamic temperature conditions. The start of increase in $CO_2$ production rate from the food or rate of package $CO_2$ concentration change was found to coincide with the point of microbial quality limit and could be used as an index of microbial shelf life determination. This also corresponded to lag time of $CO_2$ concentration change or time for the $CO_2$ concentration to reach a certain value. The application potential of the proposed logic was confirmed for a sensor system to measure on real time and transmit the $CO_2$ concentration wireless to the computer system.

  • PDF

Screening of Anti-Adhesion Agents for Pathogenic Escherichia coli O157:H7 by Targeting the GrlA Activator

  • Sin Young Hong;Byoung Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.329-338
    • /
    • 2023
  • Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.

Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data

  • Mingyue Hu;Lulu Shi;Wenfeng Yi;Feng Li;Shouqing Yan
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.461-470
    • /
    • 2024
  • Objective: The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. Methods: To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. Results: The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. Conclusion: In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.

Evaluating the Potential of Korean Mudflat-Derived Penicillium nalgiovense SJ02 as a Fungal Starter for Manufacturing Fermented Sausage

  • Sujeong Lee;Jeehwan Choe;Minji Kang;Minkyoung Kang;Sooah Kim;Sangnam Oh
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.912-933
    • /
    • 2024
  • The objective of this study was to isolate, identify, and evaluate novel Korean starter cultures for use in fermented sausages. A total of 72 strains were isolated from various indigenous sources, including Nuruk, Jeotgal, and mudflats on the west coast of South Korea. Two strains were identified as Penicillium nalgiovense (SD01 and SJ02), a traditional starter used in the production of fermented sausages. A comparative analysis was performed between SD01 and SJ02 using the commercial starter culture (M600). Strain SJ02 exhibited superior lipolytic and proteolytic activities, as well as an enhanced growth rate at the optimal salinity level of 2% NaCl compared to M600. No significant differences were observed in thiobarbituric acid reactive substances values, sausage colors, and texture properties between SJ02 and M600 fermented sausages, except for adhesiveness. Profiles of mycotoxin-related genes were similar for both strains. Electronic nose analysis revealed distinct aroma profiles between SJ02 and M600 fermented sausages, with a relatively higher levels of propan-2-one and butyl butanoate in SJ02, and a higher level of ethanol and propanal in M600. In electronic tongue analysis, there was no significant differences in taste characteristics between SJ02 and M600. These results indicate that P. nalgiovense SJ02 is a potential starter culture to produce dry fermented sausages, enhancing Korean style cured meat processing industry.

New surveillance concepts in food safety in meat producing animals: the advantage of high throughput 'omics' technologies - A review

  • Pfaffl, Michael W.;Riedmaier-Sprenzel, Irmgard
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.1062-1071
    • /
    • 2018
  • The misuse of anabolic hormones or illegal drugs is a ubiquitous problem in animal husbandry and in food safety. The ban on growth promotants in food producing animals in the European Union is well controlled. However, application regimens that are difficult to detect persist, including newly designed anabolic drugs and complex hormone cocktails. Therefore identification of molecular endogenous biomarkers which are based on the physiological response after the illicit treatment has become a focus of detection methods. The analysis of the 'transcriptome' has been shown to have promise to discover the misuse of anabolic drugs, by indirect detection of their pharmacological action in organs or selected tissues. Various studies have measured gene expression changes after illegal drug or hormone application. So-called transcriptomic biomarkers were quantified at the mRNA and/or microRNA level by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technology or by more modern 'omics' and high throughput technologies including RNA-sequencing (RNA-Seq). With the addition of advanced bioinformatical approaches such as hierarchical clustering analysis or dynamic principal components analysis, a valid 'biomarker signature' can be established to discriminate between treated and untreated individuals. It has been shown in numerous animal and cell culture studies, that identification of treated animals is possible via our transcriptional biomarker approach. The high throughput sequencing approach is also capable of discovering new biomarker candidates and, in combination with quantitative RT-qPCR, validation and confirmation of biomarkers has been possible. These results from animal production and food safety studies demonstrate that analysis of the transcriptome has high potential as a new screening method using transcriptional 'biomarker signatures' based on the physiological response triggered by illegal substances.

Selection and Characterization of Staphylococcus hominis subsp. hominis WiKim0113 Isolated from Kimchi as a Starter Culture for the Production of Natural Pre-converted Nitrite

  • Hwang, Hyelyeon;Lee, Ho Jae;Lee, Mi-Ai;Sohn, Hyejin;Chang, You Hyun;Han, Sung Gu;Jeong, Jong Youn;Lee, Sung Ho;Hong, Sung Wook
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.512-526
    • /
    • 2020
  • Synthetic nitrite is considered an undesirable preservative for meat products; thus, controlling synthetic nitrite concentrations is important from the standpoint of food safety. We investigated 1,000 species of microorganisms from various kimchi preparations for their potential use as a starter culture for the production of nitrites. We used 16S rRNA gene sequence analysis to select a starter culture with excellent nitrite and nitric oxide productivity, which we subsequently identified as Staphylococcus hominis subspecies hominis WiKim0113. That starter culture was grown in NaCl (up to 9%; w/v) at 10℃-40℃; its optimum growth was observed at 30℃ at pH 4.0-10.0. It exhibited nonproteolytic activity and antibacterial activity against Clostridium perfringens, a bacterium that causes food poisoning symptoms. Analysis of Staphylococcus hominis subspecies hominis WiKim0113 with an API ZYM system did not reveal the presence of β-glucuronidase, and tests of the starter culture on 5% (v/v) sheep blood agar showed no hemolytic activity. Our results demonstrated the remarkable stability of coagulase-negative Staphylococcus hominis subspecies hominis WiKim0113, especially in strain negative for staphylococcal enterotoxins and sensitive to clinically relevant antibiotics. Moreover, Staphylococcus hominis subspecies hominis WiKim0113 exhibited a 45.5% conversion rate of nitrate to nitrite, with nitrate levels reduced to 25% after 36 h of culturing in the minimal medium supplemented with nitrate (200 ppm). The results clearly demonstrated the safety and utility of Staphylococcus hominis subspecies hominis WiKim0113, and therefore its suitability as a starter culture.

Evaluation, Characterization and Molecular Analysis of Cellulolytic Bacteria from Soil in Peshawar, Pakistan

  • Ikram, Hira;Khan, Hamid Ali;Ali, Hina;Liu, Yanhui;Kiran, Jawairia;Ullah, Amin;Ahmad, Yaseen;Sardar, Sadia;Gul, Alia
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.245-254
    • /
    • 2022
  • Cellulases are a group of biocatalyst enzymes that are capable of degrading cellulosic biomass present in the natural environment and produced by a large number of microorganisms, including bacteria and fungi, etc. In the current study, we isolated, screened and characterized cellulase-producing bacteria from soil. Three cellulose-degrading species were isolated based on clear zone using Congo red stain on carboxymethyl cellulose (CMC) agar plates. These bacterial isolates, named as HB2, HS5 and HS9, were subsequently characterized by morphological and biochemical tests as well as 16S rRNA gene sequencing. Based on 16S rRNA analysis, the bacterial isolates were identified as Bacillus cerus, Bacillus subtilis and Bacillus stratosphericus. Moreover, for maximum cellulase production, different growth parameters were optimized. Maximum optical density for growth was also noted at pH 7.0 for 48 h for all three isolates. Optical density was high for all three isolates using meat extract as a nitrogen source for 48 h. The pH profile of all three strains was quite similar but the maximum enzyme activity was observed at pH 7.0. Maximum cellulase production by all three bacterial isolates was noted when using lactose as a carbon rather than nitrogen and peptone. Further studies are needed for identification of new isolates in this region having maximum cellulolytic activity. Our findings indicate that this enzyme has various potential industrial applications.

Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

  • Ku, Bum Seung;Mamuad, Lovelia L.;Kim, Seon-Ho;Jeong, Chang Dae;Soriano, Alvin P.;Lee, Ho-Il;Nam, Ki-Chang;Ha, Jong K.;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.804-811
    • /
    • 2013
  • The effects and significance of ${\gamma}$-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen ($NH_3$-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.

Estimation of methane emissions from local and crossbreed beef cattle in Daklak province of Vietnam

  • Ramirez-Restrepo, Carlos Alberto;Van Tien, Dung;Le Duc, Ngoan;Herrero, Mario;Le Dinh, Phung;Van, Dung Dinh;Le Thi Hoa, Sen;Chi, Cuong Vu;Solano-Patino, Cesar;Lerner, Amy M.;Searchinger, Timothy D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1054-1060
    • /
    • 2017
  • Objective: This study was aimed at evaluating effects of cattle breed resources and alternative mixed-feeding practices on meat productivity and emission intensities from household farming systems (HFS) in Daklak Province, Vietnam. Methods: Records from Local $Yellow{\time}Red$ Sindhi (Bos indicus; Lai Sind) and 1/2 Limousin, 1/2 Drought Master, and 1/2 Red Angus cattle during the growth (0 to 21 months) and fattening (22 to 25 months) periods were used to better understand variations on meat productivity and enteric methane emissions. Parameters were determined by the ruminant model. Four scenarios were developed: (HFS1) grazing from birth to slaughter on native grasses for approximately 10 h plus 1.5 kg dry matter/d (0.8% live weight [LW]) of a mixture of guinea grass (19%), cassava (43%) powder, cotton (23%) seed, and rice (15%) straw; (HFS2) growth period fed with elephant grass (1% of LW) plus supplementation (1.5% of LW) of rice bran (36%), maize (33%), and cassava (31%) meals; and HFS3 and HFS4 computed elephant grass, but concentrate supplementation reaching 2% and 1% of LW, respectively. Results: Results show that compared to HFS1, emissions ($72.3{\pm}0.96kg\;CH_4/animal/life$; least squares $means{\pm}standard$ error of the mean) were 15%, 6%, and 23% lower (p<0.01) for the HFS2, HFS3, and HFS4, respectively. The predicted methane efficiencies ($CO_2eq$) per kg of LW at slaughter ($4.3{\pm}0.15$), carcass weight ($8.8{\pm}0.25kg$) and kg of edible protein ($44.1{\pm}1.29$) were also lower (p<0.05) in the HFS4. In particular, irrespective of the HSF, feed supply and ratio changes had a more positive impact on emission intensities when crossbred 1/2 Red Angus cattle were fed than in their crossbred counterparts. Conclusion: Modest improvements on feeding practices and integrated modelling frameworks may offer potential trade-offs to respond to climate change in Vietnam.