Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12558

Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate  

Ku, Bum Seung (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Mamuad, Lovelia L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Kim, Seon-Ho (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Jeong, Chang Dae (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Soriano, Alvin P. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Lee, Ho-Il (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Nam, Ki-Chang (Meat Science Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Ha, Jong K. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Lee, Sang Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.6, 2013 , pp. 804-811 More about this Journal
Abstract
The effects and significance of ${\gamma}$-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen ($NH_3$-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.
Keywords
GABA; Biogenic Amines; Feed Additives; In vitro; Antioxidant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gardner, N. J., T. Savard, P. Obermeier, G. Caldwell and C. P. Champagne. 2001. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int. J. Food Microbiol. 64:261-275.   DOI   ScienceOn
2 Groot Koerkamp, P. W. G., J. H. M. Metz, G. H. Uenk, V. R. Phillips, M. R. Holden, R. W. Sneath, J. L. Short, R. P. White, J. Hartung, J. Seedorf, M. Schröder, K. H. Linkertc, S. Pedersend, H. Takaid, J. O. Johnsend and C. M. Wathes. 1998. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 70:79-95.   DOI   ScienceOn
3 Han, S.-K., S.-H. Kim and H.-S. Shin. 2005. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochem. 40:2897-2905.   DOI   ScienceOn
4 Hassanat, F. and C. Benchaar. 2012. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93:332-339.
5 Hayakawa, K., M. Kimura, K. Kasaha, K. Matsumoto, H. Sansawa and Y. Yamori. 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr. 92:411-417.   DOI   ScienceOn
6 Holovska, K., V. Lenartova, P. Pristas and P. Javorsky. 2002. Are ruminal bacteria protected against environmental stress by plant antioxidants? Lett. Appl. Microbiol. 35:301-304.   DOI   ScienceOn
7 Huang, J., L.-h. Mei, H. Wu and D.-q. Lin. 2007. Biosynthesis of $\gamma$-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J. Microbiol. Biotechnol. 23:865-871.   DOI
8 Akinfemi, A., A. O. Adesanya and V. E. Aya. 2009. Use of an in vitro gas production technique to evaluate some Nigerian feedstuffs. Am. Eur. J. Sci. Res. 4:240-245.
9 Aschenbach, J. R. and G. Gäbel. 2000. Effect and absorption of histamine in sheep rumen: Significance of acidotic epithelial damage. J. Anim. Sci. 78:464-470.
10 Baydas, G., F. Ozveren, I. Akdemir, M. Tuzcu and A. Yasar. 2005. Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. J. Pineal. Res. 39:50-56.   DOI   ScienceOn
11 Beuving, G. and G. M. Vonder. 1978. Effect of stressing factors on corticosterone levels in the plasma of laying hens. Gen. Comp. Endocrinol. 35:153-159.   DOI   ScienceOn
12 Cho, Y. R., J. Y. Chang and H. C. Chang. 2007. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17:104-109.
13 Van Os, M., J. P. Dulphy and R. Baumont. 1995. The effect of protein degradation products in grass silages on feed intake and intake behaviour in sheep. Br. J. Nutr. 73:51-64.   DOI   ScienceOn
14 Thauer, R. K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144:2377-2406.   DOI   ScienceOn
15 Ueno, Y., K. Hayakawa, S. Takahashi and K. Oda. 1997. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci. Biotechnol. Biochem. 61:1168-1171.   DOI   ScienceOn
16 Underwood, W. J. 1992. Rumen lactic acidosis. Part 2. Clinical signs, diagnosis, treatment and prevention. Compend. Cont. Educ. Pract. Vet. 14:1265-1270.
17 Omar, N. B., F. Ampe, M. Raimbault, J. P. Guyot and P. Tailliez. 2000. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Syst. Appl. Microbiol. 23:285-291.   DOI   ScienceOn
18 Wolfenson, D., Y. Frei, N. Snapir and A. Berman. 1981. Heat stress effects on capillary blood flow and its redistribution in the laying hen. Pflugers. Arch. 390:86-93.   DOI
19 Zhang, M., X. T. Zou, H. Li, X. Y. Dong and W. Zhao. 2012. Effect of dietary gamma-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Anim. Sci. J. 83:141-147.   DOI   ScienceOn
20 Murillo, M., E. Herrera, O. Reyes, J. N. Gurrola and E. Gutierrez. 2011. Use in vitro gas production technique for assessment of nutritional quality of diets by range steers. Afr. J. Agric. Res. 6:2522-2526.
21 Paglia, D. E. and W. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158-169.
22 Russell, J. B., W. M. Sharp and R. L. Baldwin. 1979. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. J. Anim. Sci. 48:251-255.
23 Russell, J. B., C. J. Sniffen and P. J. Van Soest. 1983. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J. Dairy Sci. 66:763-775.   DOI   ScienceOn
24 Russell, J. B. and P. J. Van Soest. 1984. In vitro ruminal fermentation of organic acids common in forage. Appl. Environ. Microbiol. 47:155-159.
25 SAS. 2002. SAS/STAT. Statistical Analysis Systems for Windows. Release 9.1. SAS Institute Inc., Cary, NC, USA.
26 Dawson, L. E. R. and C. S. Mayne. 1997. The effect of infusion of putrescine and gamma amino butyric acid on the intake of steers offered grass silage containing three levels of lactic acid. Anim. Feed Sci. Technol. 66:15-29.   DOI   ScienceOn
27 Marklund, S. and G. Marklund. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469-474.   DOI   ScienceOn
28 Matsumoto, D., M. Takagi, Y. Fushimi, K. Okamoto, M. Kido, M. Ryuno, Y. Imura, M. Matsunaga, K. Inokoshi, F. Shahada and E. Deguchi. 2009. Effects of gamma-aminobutyric acid administration on health and growth rate of group-housed Japanese black calves fed using an automatic controlled milk feeder. J. Vet. Med. Sci. 71:651-656.   DOI   ScienceOn
29 Miller, M. J., X. J. Zhang, B. Barkemeyer, H. Sadowska-Krowicka, S. Eloby-Childress, X. Gu and D. A. Clark. 1991. Potential role of histamine monochloramine in a rabbit model of ileitis. Scand. J. Gastroenterol. 26:852-858.   DOI
30 Costantini, A., E. Vaudano, V. Del Prete, M. Danei and E. Garcia-Moruno. 2009. Biogenic amine production by contaminating bacteria found in starter preparations used in winemaking. J. Agric. Food Chem. 57:10664-10669.   DOI   ScienceOn
31 de las Heras, M. A., A. Valcarcel and L. J. Perez. 1997. In vitro capacitating effect of gamma-aminobutyric acid in ram spermatozoa. Biol. Reprod. 56:964-968.   DOI   ScienceOn
32 Do, H. Q., T. Thi Thuy, T. Phuc Hao, T. R. Preston and R. A. Leng. 2011. Effects of nitrate and sulphur on in vitro methane production and dry matter degradation. Livest. Res. Rural Dev. 23.
33 Dryhurst, N. and C. D. Wood. 1998. The effect of nitrogen source and concentration on in vitro gas production using rumen micro-organisms. Anim. Feed Sci. Technol. 71:131-143.   DOI   ScienceOn
34 Fusi, E., L. Rossi, R. Rebucci, F. Cheli, A. Di Giancamillo, C. Domeneghini, L. Pinotti, V. Dell'Orto and A. Baldi. 2004. Administration of biogenic amines to Saanen kids: effects on growth performance, meat quality and gut histology. Small Rumin. Res. 53:1-7.   DOI   ScienceOn
35 LeBlanc, J. G., S. del Carmen, A. Miyoshi, V. Azevedo, F. Sesma, P. Langella, L. G. Bermúdez-Humaran, L. Watterlot, G. Perdigon and A. de Moreno de LeBlanc. 2011. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice. J. Biotechnol. 151:287-293.   DOI   ScienceOn
36 Javorsky, P., E. Rybosova, Z. Mayerova, H. Mlynarcikova and J. Legath. 1993. Resistance of ruminal microorganisms to supermethrin. Vet. Hum. Toxicol. 35:15-18.
37 Koelkebeck, K. W. and T. W. Odom. 1994. Laying hen responses to acute heat stress and carbon dioxide supplementation: I. Blood gas changes and plasma lactate accumulation. Comp. Biochem. Physiol. Comp. Physiol. 107:603-606.   DOI
38 Komuro, Y., K. Ishihara, Y. Kojima, K. Saigenji and K. Hotta. 1998. Distinct effects of tetragastrin in rat gastroduodenal mucosa on mucin content and mucosal protective action against histamine-induced injury. Dig. Dis. Sci. 43:1050-1056.   DOI   ScienceOn
39 Lenartova, V., K. Holovska and P. Javorsky. 1998. The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium. FEMS Microbiol. Ecol. 27:319-325.   DOI
40 Li, H. and Y. Cao. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107-1116.   DOI
41 Li, H., T. Qiu, G. Huang and Y. Cao. 2010. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 9:85.   DOI   ScienceOn
42 Liu, J. X., A. Susenbeth and K. H. Sudekum. 2002. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay, and mulberry leaves. J. Anim. Sci. 80:517-524.
43 Lopez-Torres, M., R. Perez-Campo and G. Barja de Quiroga. 1991. Aging in brown fat: antioxidant defenses and oxidative stress. Mech. Ageing Dev. 59:129-137.   DOI   ScienceOn
44 Slyter, L. L., L. D. Satter and D. A. Dinius. 1979. Effect of ruminal ammonia concentration on nitrogen utilization by steers. J Anim. Sci. 48:906-912.
45 Satokari, R. M., E. E. Vaughan, H. Smidt, M. Saarela, J. Matto and W. M. de Vos. 2003. Molecular approaches for the detection and identification of Bifidobacteria and Lactobacilli in the human gastrointestinal tract. Syst. Appl. Microbiol. 26:572-584.   DOI   ScienceOn
46 Shalaby, A. R. 1996. Significance of biogenic amines to food safety and human health. Food Res. Int. 29:675-690.   DOI   ScienceOn
47 Shelp, B. J., A. W. Bown and M. D. McLean. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4:446-452.   DOI   ScienceOn
48 Snyder, L. R., J. J. Kirkland and J. L. Glajch. 1997. Practical HPLC Method Development. John Wiley and Sons, New York, USA. pp. 180.
49 St-Pierre, N. R., B. Cobanov and G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86:E52-E77.   DOI   ScienceOn
50 Storz, G., L. A. Tartaglia, S. B. Farr and B. N. Ames. 1990. Bacterial defenses against oxidative stress. Trends Genet. 6:363-368.   DOI   ScienceOn
51 Syrjala, L., V. Kossila and H. Sipila. 1973. A study of nutritional status of Finnish reindeer (Rangifer tarandus L.) in different months. I. Composition and volume of the microbiota. J. Sci. Agric. Soc. Finl. 45:534-541.
52 Tabaru, H., E. Kadota, H. Yamada, N. Sasaki and A. Takeuchi. 1988. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Jpn. J. Vet. Sci. 50:1124-1126.   DOI   ScienceOn
53 Inoue, K., T. Shirai, H. Ochiai, M. Kasao, K. Hayakawa, M. Kimura and H. Sansawa. 2003. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57:490-495.   DOI   ScienceOn
54 Jakobs, C., J. Jaeken and K. M. Gibson. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16:704-715.   DOI   ScienceOn