• Title/Summary/Keyword: Measuring Tip

Search Result 212, Processing Time 0.021 seconds

Morphological Development of Eggs, Larvae and Juveniles of Trident Goby, Tridentiger brevispinis (Pisces: Gobiidae) (민물검정망둑 Tridentiger brevispinis의 난발생 및 자치어 형태발달)

  • Jae Min Park;Kyeong Ho Han
    • Korean Journal of Ichthyology
    • /
    • v.35 no.1
    • /
    • pp.10-19
    • /
    • 2023
  • This study aimed to examine the early life history of Trident goby (Tridentiger brevispinis) by observing their egg development and juvenile fish morphology. The average size of mature eggs was 1.13~1.41 (1.30±0.07) mm (n=30), and 0.70~0.86 (0.79±0.04) mm (n=30) in long diameter and short diameter, respectively. The incubation period at 24±1℃ ranged from 167~228 h. The newly hatched larvae measured 2.31~2.78 (2.51±0.18) mm (n=30) in total length (TL), and their mouth and anus were not yet open. At 3 days after hatching, the preflexion larvae reached 2.84~3.10 (2.98±0.10) mm in TL, where in their yolk absorption was complete and their mouths began to open. At 19 days after hatching, the larvae reached the flexion stage, measuring 4.02~4.62 (4.36±0.19) mm in TL. The tip of their notochord was bent upward. At 30 days post-hatching, the larvae reached the postflexion stage, measuring between 5.04~6.36 (5.76±0.51) mm in TL, with the tip of the caudal fin bent at 45°. After 54 days, the larvae had reached the juvenile stage, measuring between 7.43~9.84 (8.48±0.90) mm in TL, and were differentiated by their constant number of fins (6 first dorsal, 12 second dorsal, 11 anal, and 10 ventral fins). This study found that T. brevispinis had larger fertilized eggs and a greater number of myotomes in hatching larva than similar species. Additionally, the distribution of melanophores in T. brevispinis was distinct from that in other similar species, making it easy to distinguish them morphologically.

Determination of stress intensity factor by means of ACPD technique for ferromagnetic materials (교류전위차법에 의한 강자성체의 응력확대계수 결정)

  • Lee, Jeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1392-1399
    • /
    • 1997
  • In order to determine the Mode I stress intensity factor ($K_1$) experimentally by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a ferromagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effect of the magnetic flux on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. To remove the magnetic flux, a new measuring system was made by utilizing the characteristic of coaxial transmission line. The change in potential drop in the case without magnetic flux in the air was caused by the change in electromagnetic properties near the crack tip due to magnetization. The relationship between the change in potential drop and the change in $K_I$ was linealized by demagnetization and was found to be independent of the crack length.

Computation of Crack Tip Mode I Stress Intensity Factor of a Specimen for Measuring Slow Crack Growth Resistance of Plastic Pipes Using Finite-Element Method (유한요소법에 의한 플라스틱 파이프의 저속균열성장 저항성 시험편 균열선단 모드 I 응력확대계수 계산)

  • Choi, Sun-Woong;Park, Yeong-Joo;Suh, Yeong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1225-1234
    • /
    • 2005
  • Mode I stress intensity factor $(K_I)$ of Notched Ring Test(NRT) specimen for measuring slow crack growth resistance was found using finite-element method. The theoretical $K_I$ value of NRT was not available in any references and could not be solved analytically. At first, in order to verify the accuracy of the finite-element approach, published $K_I$ values of several cracks were calculated and compared with finite-element results. The results were in good agreement within inherent errors of theoretical $K_I$. Finally the mode I stress intensity factor of NRT was found using 2- and 3-dimensional finite-element methods and expressed as a function of the applied load. This enabled direct comparison of resistance to slow crack growth between NRT and Notched Pipe Test(NPT), which employ different loading regime.

Experimental Study on Plane Stress Fracture Toughness and Fatigue Crack Propagation of SS304 and SS316 (SS304와 SS316의 평면응력 파괴인성치 측정과 피로 균열 전파에 대한 실험적 연구)

  • Lee, O.S.;Han, Y.S.;Yoo, S.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.61-69
    • /
    • 1997
  • A simple and relatively new experimental method is proposed to estimate the plane stress fracture toughness by using compact tension (CT) specimen. The anti-buckling plates (fabricated to prevent the buckling caused by the 45 plastic yielding around crack tip under the plane stress condition) help to determine the relatively accurate plane stress fracture toughness of two stainless steels (SS304 and SS316). The fatigue crack propagation behavior of two stainless steels under two different loading conditions such as 10Hz and 5Hz frequency fatigue loadings was investigated by using image analysis technique (IAT) which renders several technical advantages over various conventional measuring methods. It was found that the IAT could be used to estimate fatigue crack lengths more effectively. Furthermore, it was suggested that we might control the measuring time interval for fatigue crack propagation by nearly automatically controlled technical process with the help of IAT.

  • PDF

The Radiological Findings of the Catheters Inserted 10cm Cephaladly in Epidural Space (경막외강내 두측으로 10cm 삽입한 카테터의 X-선상 소견)

  • Chung, So-Young;Lee, Hyo-Keun;Chae, Jin-Ho;Lee, Chul-Seung;Lee, Chul;Kim, Chan;Kim, Soon-Yul
    • The Korean Journal of Pain
    • /
    • v.8 no.2
    • /
    • pp.298-303
    • /
    • 1995
  • We have inserted epidural catheter for single or continuous injection of a drug for epidural analgesia. It is important to localize the tip of epidural catheter in appropriate site to acquire the most effective analgesia. In epidural block, we observed course and location of the tip of epidural catheter. Subject: 70 patients were divided into group I(non-injection of saline group during catheter insertion) and group II(injection group during catheter insertion). Group I included cervical(n=20), thoracic(n=10), and lumbar(n=20) epidural group. Group II, cervical(n=10), and lumbar(n=10) epidural group. Method: 19G FlexTip $Plus^{TM}$ Epidural Catheter ($Arrow^{(R)}$) was inserted 10cm cephaladly in epidural space with(group II) or without(group I) saline flushing. We observed course and location of the tip of epidural catheter by C-arm image intensifier during injection of contrast media ($Omnipaque^{(R)}$). Result: In group I, the number of tips of epidural catheters located within 2 cm from inserted site were: cervical 14/20(70%), thoracic 2/10(20%). lumbar 16/20(80%). In thoracic epidural blocks, tips of epidural catheters were more cephaladly located than with cervical and lumbar epidural blocks. With cervical epidural blocks, the number of tips of epidural catheters located within 2 cm from insertion site were less in group II than group I (20% vs. 70%). But no significant differences were noted between group I and group II with lumbar epidural block(90% vs. 80%). The number of tips of epidural catheters located around a predicted site were: cervical 2/20(10%), thoracic 4/10(40%), lumbar 0/20(0%) in group I, and cervical 2/10(20%), lumbar 1/10(10%) in group II. Conclusion: It was impossible to predict the exact location of tips of epidural catheters by measuring the inserted length without epidurogram. With many cases, tips of epidural catheters were located around the insertion site in lumbar epidural blocks, and in some cases around the predicted site in thoracic epidural blocks. The results suggests that epidural block should be done at a point near the required band of analgesia.

  • PDF

Comparison of Spray Angles of Multihole Port Fuel Gasoline Injector with Different Measuring Methods (측정방법에 따른 흡기포트 분사식 다공 가솔린인젝터의 분무각 비교)

  • Kim, J.H.;Rhim, J.H.;No, S.Y.;Moon, B.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.17-26
    • /
    • 2000
  • The main parameter commonly used to evaluate spray distribution is spray angle. Spray angle is important because it influences the axial and radial distribution of the fuel. Spray angles were measured and compared for the two non-air assisted injectors such as 2hole-2stream 4hole-1stream injectors used for port fuel injection gasoline engines with n-heptane as a fuel by three different measuring techniques, i.e., digital image processing, shadowgraphy, and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35 MPa into the room temperature and atmospheric pressure environment. In digital image processing approach, the selection of the transmittance level is critical to obtain the edge of spray and hence to measure the spray angle. From the measurement results by the shadowgraphy technique, it is dear that the spray angle is varied during the spray injection period. The measurement results from spray patternator show that the different spray angles exist in different region. Spray angle increases with the increase in the injection pressure. it is suggested that the spray angle and stream separated angle should be specified when spray is characterized for 2hole-2stream injector, because spray angle is much different though stream separated angle is same. It was also considerably affected by the measurement techniques introduced in this experimental work. However, the optimal axial distance for measuring the spray angle seems to be at least 60-80 mm from the injector tip for two non-air assisted injectors.

  • PDF

A study on the hydro-embedding technology in the tube hydroforming process (하이드로포밍 공정을 이용한 무용접 부품체결 기술개발에 관한 연구)

  • 김동규;박광수;안익태;한수식;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.241-244
    • /
    • 2003
  • The productivity of hydroforming process can be increased by combining pre-forming process and post-forming process such as the bending, piercing and the embedding process. Therefore in this study, integrated studies on the hydro-embedding technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters. In the case of the embedding test the characteristics of the embedded parts, such as the shape of the screw tip, screw thread and shape of thread were investigated at various process conditions. To measure the clamping force between the embedded part and the tube, special measuring device was used.

  • PDF

Development and Calibration of a Seven-Hole Pressure Probe (7공 압력프로브의 교정 및 개발)

  • Yang, Jae-Hun;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • The present study was carried out in order to develope a seven-hole pressure probe which is able to measure high flow angles. The seven-hole pressure probe is a non-nulling, directional velocity probe used for measuring three dimensional flow that having high flow angles. A 4 mm diameter seven-hole conical pressure probe was manufactured with a cone angle of 70$^{\circ}$. The probe was comprised of seven 1 mm diameter stainless steel tubes packed close together and fitted into an outer stainless steel sleeve. The calibration procedure is based on the use of the Callington's polynomial curve-fit method. The validity of the seven-hole conical pressure probe is demonstrated by comparisons with hot-wire data.

  • PDF

Spray Characteristics of Fuel Injector in DI Diesel Engine (직접 분사식 디젤 기관 인젝터의 연료 분무 특성)

  • 이창식;김민규;전원식;진다시앙
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.75-81
    • /
    • 2001
  • This paper presents the atomization characteristics of single hole injector in the direct injection type diesel engine. The spray characteristics of fuel injector such as the droplet size and velocity were measured by phase Doppler particle analyzer. In this paper, the atomization characteristics of fuel spray are investigated for the experimental analysis of the measuring data by the results of mean diameter and mean velocity of droplet. The effect of fuel injection pressure on the droplet size shows that the higher injection pressure results in the decrease of mean droplet diameter in the fuel spray. The minimum size of fuel spray droplet appears on the location of 40mm axial distance from nozzle exit of diesel injector. Based on the experimental results, the correlation between the droplet diameter and mean velocity of the diesel spray due to the change of axial and radial distance from the nozzle tip were investigated.

  • PDF

Development of an Ultra Precision Machining System Using a Force and Displacement Sensing Module (힘 및 변위 감지기구를 적용한 초정밀 가공시스템 개발)

  • Bang, Jin-Hyeok;Kwon, Ki-Hwan;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.42-50
    • /
    • 2005
  • This paper presents an ultra precision machining system using a high sensitive force sensing module to measure machining forces and penetration displacement in a tip-based nanopatterning. The force sensing module utilizes a leaf spring mechanism and a capacitive displacement sensor and it has been designed to provide a measuring range from 80 ${\mu}N$ to 8 N. This force sensing module is mounted on a PZT driven in-feed motion stage with 1 nm resolution. The sample can be moved by X-Y scanning motion stage with 5 nm resolution. In nano indentation experiments and patterning experiments, the machining forces were controlled and monitored by the force sensing module. Then, the patterned samples were measured by AFM. Experimental results demonstrated that the developed system can be used as an effective device in nano indentation and nanopatterning operation.