• Title/Summary/Keyword: Measurement of size and number density

Search Result 32, Processing Time 0.025 seconds

The Cystallization Behavior of $Li_2O-SiO_2$ Glasses ($Li_2O-SiO_2$ 계 유리의 결정화에 관한 연구)

  • 김득중;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.163-170
    • /
    • 1981
  • The crystallization of $Li_2O-SiO_2$ system glasses and the effect of phase separtion to crystal nucleation were studied. The crystallization temperatures of various glasses were determined by DTA and glasses were nucleation heat treated at the temperatures ranging from 45$0^{\circ}C$ to 5$25^{\circ}C$. These glasses were thengown at $700^{\circ}C$ to observable size in the optical microscope. Crystal nucleation rates of various glasses were obtained by estimating the number of crystals per unit volume. The main crystal phase of these glasses identified by X-ray diffraction was lithium disilicate ($Li_2O$.$2SiO_2$). It was found that the crystal nucleation rate of glass (19.5% $Li_2P$-80.5% $SiO_2$), the nearest composition to lithium disilicate, was higher than other glasses. The opalescence caused by phase separation was observed in the nucleation heat treated glass (16.3% $Li_2O$-83.7% $SiO_2$). The result from nucleation density measurement of this glass indicated that the nucleation was enhanced during early stage of phase separation. The molphologies of crystals in glasses and crystal growth rate at $600^{\circ}C$ were also discussed.

  • PDF

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

The Properties of Roadway Particles from the Interaction between the Tire and the Road Pavement (실제 도로 주행과정에서 타이어와 도로의 마찰에 의해서 발생하는 미세입자의 특성연구)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.131-141
    • /
    • 2012
  • A large fraction of urban $PM_{10}$ concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the RP on asphalt roads according to vehicle speed. The equipment of the mobile system provides $PM_{10}$ concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for $PM_{10}$ concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. As a result, the $PM_{10}$ concentration and particle number of ultra-fine particles were measured to be very high.

Vision-based Potato Detection and Counting System for Yield Monitoring

  • Lee, Young-Joo;Kim, Ki-Duck;Lee, Hyeon-Seung;Shin, Beom-Soo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.103-109
    • /
    • 2018
  • Purpose: This study has been conducted to develop a potato yield monitoring system, consisting of a segmentation algorithm to detect potatoes scattered on a soil surface and a counting system to count the number of potatoes and convert the data from two-dimensional images to masses. Methods: First, a segmentation algorithm was developed using top-hat filtering and processing a series of images, and its performance was evaluated in a stationary condition. Second, a counting system was developed to count the number of potatoes in a moving condition and calculate the mass of each using a mass estimation equation, where the volume of a potato was obtained from its two-dimensional image, and the potato density and a correction factor were obtained experimentally. Experiments were conducted to segment potatoes on a soil surface for different potato sizes. The counting system was tested 10 times for 20 randomly selected potatoes in a simulated field condition. Furthermore, the estimated total mass of the potatoes was compared with their actual mass. Results: For a $640{\times}480$ image size, it took 0.04 s for the segmentation algorithm to process one frame. The root mean squared deviation (RMSD) and average percentage error for the measured mass of potatoes using this counting system were 12.65 g and 7.13%, respectively, when the camera was stationary. The system performance while moving was the best in L1 (0.313 m/s), where the RMSD and percentage error were 6.92 g and 7.79%, respectively. For 20 newly prepared potatoes and 10 replication measurements, the counting system exhibited a percentage error in the mass estimation ranging from 10.17-13.24%. Conclusions: At a travel speed of 0.313 m/s, the average percentage error and standard deviation of the mass measurement using the counting system were 12.03% and 1.04%, respectively.

Properties of Roadway Particles from the Interaction between Tire and Road Pavement (차량 주행 과정에서 타이어와 도로의 마찰에 의해서 발생하는 도로입자의 특성연구)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Woo, Se-Jong;Kwak, Ji-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.24-32
    • /
    • 2012
  • A large fraction of urban $PM_{10}$ concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have been increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the roadway particles on asphalt road according to vehicle speed. The equipment of the mobile system provides $PM_{10}$ concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for PM10 concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. The morphology and elements of the roadway particles were also analyzed using SEM-EDX technique.

On-Road Investigation of PM Emissions of a City-Buses Fuelled by Diesel, CNG, and LPG Using a Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용하여 디젤, CNG, LPG 시내버스에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.409-416
    • /
    • 2011
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants with high temporal and spatial resolution under real conditions. Equipment for gas-phase measurements of quantity of CO, NOx, $CO_2$, and THC and for the measurement of the number density and size distribution of fine and ultra-fine particles by a FMPS and a CPC were placed in a mini-van. The exhaust of different type of vehicles can be sampled by MEL. This paper describes the construction and technical details of the MEL and presents data from the experiment in which a car chases city buses fuelled by diesel, CNG, and LPG. The diameters of most particles in the exhaust of the diesel city bus were less than 300 nm and most of the particles had a diameter of 30-60 nm. However, most particles in the exhaust of the CNG and LPG city buses were nanoparticles (diameter: less than 50 nm).

Analysis of the Threshold Voltage Instability of Bottom-Gated ZnO TFTs with Low-Frequency Noise Measurements (Low-Frequency Noise 측정을 통한 Bottom-Gated ZnO TFT의 문턱전압 불안정성 연구)

  • Jeong, Kwang-Seok;Kim, Young-Su;Park, Jeong-Gyu;Yang, Seung-Dong;Kim, Yu-Mi;Yun, Ho-Jin;Han, In-Shik;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.545-549
    • /
    • 2010
  • Low-frequency noise (1/f noise) has been measured in order to analyze the Vth instability of ZnO TFTs having two different active layer thicknesses of 40 nm and 80 nm. Under electrical stress, it was found that the TFTs with the active layer thickness of 80 nm shows smaller threshold voltage shift (${\Delta}V_{th}$) than those with thickness of 40 nm. However the ${\Delta}V_{th}$ is completely relaxed after the removal of DC stress. In order to investigate the cause of this threshold voltage instability, we accomplished the 1/f noise measurement and found that ZnO TFTs exposed the mobility fluctuation properties, in which the noise level increases as the gate bias rises and the normalized drain current noise level($S_{ID}/{I_D}^2$) of the active layer of thickness 80 nm is smaller than that of active layer thickness of thickness 40 nm. This result means that the 80 nm thickness TFTs have a smaller density of traps. This result correlated with the physical characteristics analysis performmed using XRD, which indicated that the grain size increases when the active layer thickness is made thicker. Consequently, the number of preexisting traps in the device increases with decreasing thickness of the active layer and are related closely to the $V_{th}$ instability under electrical stress.

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Effect of Lugol's Iodine Preservation on Cyanobacterial Biovolume and Estimate of Live Cell Biovolume Using Shrinkage Ratio (Lugol's Iodine Solution 첨가 후 보존 기간별 남조류 세포부피 변화 및 수축비를 이용한 생세포 부피 산정)

  • Park, Hae-Kyung;Lee, Hyeon-Je;Lee, Hae-Jin;Shin, Ra-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • The monitoring of phytoplankton biomass and community structure is essential as a first step to control the harmful cyanobacterial blooms in freshwater systems, such as seen in rivers and lakes, due to the process of eutrophication and climate change. In order to quantify the biomass of phytoplankton with a wide range in size and shape, the measurement of cell biovolume along with cell density is required for a comprehensive review on this issue. However, most routine monitoring programs preserve the gathered phytoplankton samples before analysis using chemical additives, because of the constraint of time and the number of samples. The purpose of this study was to investigate the cell biovolume change characteristics of six cyanobacterial species, which are common bloom-causing cyanobacteria in the Nakdong River, after the preservation with Lugol's iodine solution. All species showed a statistically significant difference after the addition of Lugol's iodine solution compared to the live cell biovolume, and the cell biovolume decreased to the level of 34.0 ~ 56.3 % at maximum in each species after the preservation. The nonlinear regression models for determining the shrinkage ratio by a preservation period were derived by using the cell biovolume measured until 180 days preservation of each target species, and the equation to convert the cell biovolume measured after preservation for a certain period to the cell biovolume of viable cell was derived using that formula. The conversion equation derived from this study can be used to estimate the actual cell biovolume in the natural environment at the time of sampling, by using the measured biovolume after the preservation in the phytoplankton monitoring. Moreover this is expected to contribute to the final interpretation of the water quality and aquatic ecosystem impacts due to the cyanobacterial blooms.

Experimental Study for Removing Lacquer Layer on Iron Surface by Nd:YAG Laser System (Nd:YAG 레이저를 이용한 철제 표면 옻칠 제거 실험 연구)

  • Park, Chang Su;Cho, Nam Chul;Hwang, Hyun Sung
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.377-384
    • /
    • 2016
  • There are physical and chemical method for removement of a lacquered layer existing on the surface when gilding an iron Buddha, these caused environmental pollution by surface degradation and is very noxious for conservation scientist's health. Thus, on this study, we conducted a lacquered layer removement experiments using Nd:YAG Laser which is contactless and eco-friendly. Specimens were made by polishing $5{\times}5$ size of iron(99.9%) specimens surfaces evenly and by differing of number of coating of unrefined lacquer, so there were thickness differences of $10{\mu}m$, $20{\mu}m$, and $30{\mu}m$. The laser machine used in this study was Nd:YAG Laser, and we used two wavelength modes; 1064 nm(160~180 mJ) for infrared light region and 532 nm(50~350 mJ) for ultraviolet light region. The experiment done by investigating the transition of specimens' surfaces with laser wavelength, energy, and numbers of investigation. The remain amount of lacquered layer surfaces before/after laser irradiation was investigated by stereoscopic microscope, observation by SEM, Non-contact Surface Roughness Measurement Device, and FT-IR etc. As a result of each analysis, we could verify the thickness of $10{\mu}m$, $20{\mu}m$ of lacquered layer removed without surface degradation when using 1064 nm wavelength with $1.0J/cm^2$ density. We could find out that Nd:YAG Laser is effective for removing remained lacquered layers when gilding an iron Buddha. In the future, when not only the metal has made various studies also wood lacquered furniture or the like, it seems to be utilized to remove the lacquer without surface damage.