• Title/Summary/Keyword: Measurement of Stiffness

Search Result 465, Processing Time 0.032 seconds

A Study on the Acoustical Properties of Micro-speaker according to Comb Teeth Shape of the Diaphragm (진동판의 빗살주름무늬 형상에 따른 마이크로스피커의 음향특성에 관한 연구)

  • Lee, Tae-Keun;Kim, Byoung-Sam;Cho, Tae-Jea
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.124-131
    • /
    • 2008
  • There are many factors which affect the acoustical properties of a micro-speaker. Among the factors, the shape of the diaphragm is considered in this study. As an investigating method, the finite element methods and measurement techniques applied to study the acoustical properties according to diaphragm shape. In order to vary the stiffness of the diaphragm, the some patterns of comb teeth, such as the angle and the number of comb teeth, are applied to diaphragm. We can confirm that the change of the stiffness by the changing diaphragm shape affects the vibration and sound properties of the speaker. As a result, the reduction of the angle of the comb teeth increases the diaphragm stiffness and shifts the resonance frequency to a higher frequency range. The number of the comb teeth is related to the stiffness of the edge part.

Serviceability Evaluation of Slim Composite Floor System (슬림 합성보 바닥시스템의 사용성 평가)

  • Eun, Hee-Chang
    • KIEAE Journal
    • /
    • v.8 no.6
    • /
    • pp.63-70
    • /
    • 2008
  • Slim floor construction is becoming used throughout many countries. It combines the advantages of flat slab construction with significant inherent resistance to fire. The slim floor system with web openings leads to the reduction of its self-weight. Although the system has enough strength and stiffness, it is necessary to evaluate and improve the effects of dynamic vibration to be able to annoy the residents. Thus, this study evaluates the serviceability of vibration effects based on the dynamic test of five slim composite beams. Based on the experimental results, the initial stiffness and natural frequency of all specimens exhibit the similar trend regardless of the opening and the shape of cross section. The decrease in natural frequency is deeply related to the reduction in the stiffness of specimens and thus, it can be concluded that the damage of slim composite floor can be detected by the measurement of natural frequency instead of the load-carrying capacity and the stiffness.

An Experimental Study on Dynamic Stiffness Measurement of Air Journal Bearing (공기 정압 저어널 베어링에서 동강성 측정에 관한 실험적 연구)

  • 이종렬;이준석;이득우;김태형;박보선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.429-434
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing two row sources position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. An experimental study was performed to compare theoretical analysis. The dynamic stiffness was measured in actual cutting. It helps predicting of air spindle s characteristic in machining of die more precisely. The results of investigated characteristics was applied to air spindle for high speed milling.

  • PDF

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.129-137
    • /
    • 2002
  • Elastomers, which are used engine mounts and body mount rubbers, are traditionally designed for NVH use in vehicles, and for vibration isolation in specific frequency range. According to the measurement of the characteristics of the SUV's engine mounts, there are variability in same engine mount properties. Static and dynamic stiffness of the SUV's engine mounts are changed due to the driving miles accumulated. The pre-load of body mount rubbers are changed due to the empty vehicle weight, passenger's weight and gross vehicle weight. And the dynamic stiffness of body mount rubbers are changed very hard above 150Hz frequency range.

A Study on Estimated Stiffness and Mass Matrices from Modal Data at Measured Points (측정 모달 데이터를 이용한 골조의 강성행렬 및 질량행렬 추정에 관한 연구)

  • Han, Dong-Ho;Lee, Chy-Hyoung;Yoon, Sung-Kee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.2 s.4
    • /
    • pp.59-67
    • /
    • 2002
  • In this study, a method that estimates stiffness and mass matrices of shear building from modal test data is presented. This method applied of building depends on the number of measurement points that are less in number than the total structural degrees of freedom, and on the first two orders of structural mode measured. By means of this method it is possible to use modal data of unmeasurable points to estimate total stiffness and mass matrices of structure. Some examples are studied in this paper, and its result shows that this method is reliable.

  • PDF

Stiffness change measurement for subgrade soils at freezing and thawing using impact resonance test (충격공진시험을 이용한 노상토의 동결.융해시 강성도 변화 측정)

  • Lee, Jae-Hoan;Kweon, Gi-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.686-691
    • /
    • 2009
  • Damage due to frost action in pavement structure system is creating either frost heave or stiffness-weakening of subgrade soil follow melting. The formation of ice lenses requires a frost-susceptible soil, freezing temperatures, and continuous water supply. Eliminating one of these conditions suffices to significantly reduce the intensity of frost action. It is important to know characteristics of subgrade soil in frost susceptibility or decide degree of freezing permission. Also, study on the stiffness variation of subgrade soil during freezing and thawing cycle is very important. In this study, Impact resonance test for subgrade soil at freezing and thawing confirms that is applied for.

  • PDF

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

Prediction of 2X Vibration of a Generator Rotor with Asymmetric Shaft Stiffness (비대칭 축 강성을 가지는 발전기 회전자의 2X 진동 예측)

  • Park, C.H.;Kim, Y.C.;Cho, K.G.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.16-19
    • /
    • 2007
  • The large generator rotor used in fossil power plant has the possibility of high 2X vibration due to asymmetric shaft stiffness. The generator rotor is machined into pole faces to reduce stiffness difference and then is tested through 2X vibration measurement when the balancing works are performed in the balancing shop. However, there are many cases of large difference values between 2X vibration in the balancing shop and 2X vibration in site. This paper presents a new method to estimate 2X vibration in site with more accuracy and applied for the retrofit of a fossil 400 MW class deteriorated generator. It shows that the new generator rotor is manufactured with a good 2X vibration characteristics and is operated in a low 2X vibration level although the generator rotor has high 2X vibration in the balancing shop.

  • PDF

A Study on the Field Application to Axial Stiffness Applying Corner Strut of Retainingwall Using Numerical Analysis (수치해석을 이용한 흙막이벽체의 사보강버팀보에 적용하는 축강성에 대한 현장 적용성 연구)

  • Lee, Yeong-Jin;Lee, Soung-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • Unlike the horizontal strut, the corner strut causes bending behavior by the installation angle when soil pressure occurs, so there is a limit to its application as a elasto plastic method that requires only the axial stiffness of struts. Therefore, this study attempted to approach a method of modifying axial stiffness data to present an analysis method for corner struts in elasto plastic method, and linear elasticity analysis was used for this. And, through Linear elasticity analysis, axial stiffness data for corner struts installed at the actual site were calculated. The behavior of the retainingwall was confirmed by applying the calculated axial stiffness data of corner struts to elasto plastic method, and its applicability was evaluated by comparing it with the measurement results and the finite element analysis results. As a result of the study, when the axial stiffness data of the corner struts was applied using Linear elasticity analysis(Case 1, Case 3), the axial stiffness data decreased to 9% to 17% compared to the general method of applying the axial stiffness of the struts(Case 2, Case 4), and the displacement of the retainingwall increased to 25.33% to 64.42%. Comparing this result with the measurement results, when Linear elasticity analysis was used(Case 1, Case 3), the behavior of the retainingwall during the elasto plastic method was better shown.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENTS BY MECHANICAL LOADING(I) - EXPERIMENTAL EXAMINATION -

  • Jang, Kyoung-Bok;Yoon, Hun-Sung;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.372-377
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF