• Title/Summary/Keyword: Measurement element

Search Result 1,370, Processing Time 0.032 seconds

Half-Mode Substrate Integrated Waveguide Amplifier Using Lumped-Element Transition

  • Eom, Dong-Sik;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • This paper proposes a half-mode substrate integrated waveguide (HMSIW) amplifier using lumped-element transition. The input and output impedances of this amplifier are matched by the lumped-element transition structure. This structure provides compact impedance and mode matching circuits between the HMSIW and a stand-alone amplifier. Surface mount technology inductors and capacitors are implemented to realize the lumped-element transition. A prototype of the proposed HMSIW amplifier shows 15 dB gain with 3 dB bandwidth of 4 to 7.05 GHz in a simulation and measurement.

Modelling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach

  • Chidiac, S.E.;Habibbeigi, F.
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.97-110
    • /
    • 2005
  • Rheological behaviour of fresh concrete is an important factor in controlling concrete quality. It is recognized that the measurement of the slump is not a sufficient test method to adequately characterize the rheology of fresh concrete. To further understand the slump measurement and its relationship to the rheological properties, an elasto-viscoplastic, 2-D axisymmetric finite element (FE) model is developed. The FE model employs the Bingham material model to simulate the flow of a slump test. An experimental program is carried out using the Slump Rate Machine (SLRM_II) to evaluate the finite element simulation results. The simulated slump-versus-time curves are found to be in good agreement with the measured data. A sensitivity study is performed to evaluate the effects of yield stress, plastic viscosity and cone withdrawal rate on the measured flow curve using the FE model. The results demonstrate that the computed yield stress compares well with reported experimental data. The flow behaviour is shown to be influenced by the yield stress, plastic viscosity and the cone withdrawal rate. Further, it is found that the value of the apparent plastic viscosity is different from the true viscosity, with the difference depending on the cone withdrawal rate. It is also confirmed that the value of the final slump is most influenced by the yield stress.

Finite Element Model based on Strain Tests for Predicting Bending Strength of Small Gears for Aircraft

  • Kim, Taehyung;Seok, Taehyeon;Seol, Jin-woon;Lee, Byung-ho;Kwon, Byung-gi;Choi, Jong-yoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2020
  • This study proposes a finite element (FE) model for predicting the bending strength of small gears used in electro-mechanical actuators for aircraft. First, a strain gauge was attached to the tooth root of test gear, and the strain was measured. Subsequently, the FE model was applied to calculate the strain of the test gear, and the modeled strain was compared with the experimental strain. The results confirmed that the FE strain was very close to the experimental strain and the FE model was valid. This FE model was extended to the bending strength analysis of several small gear tooth models. The bending strengths of all the tooth models were almost identical to the ISO theoretical bending strength. Finally, the FE model was validated and the reliability of the modeled bending strength was evaluated through the strain measurement experiment.

Investigation on the Studies for Welding Residual Stresses in Nuclear Components (원전 기기 용접 잔류응력 평가 연구 고찰)

  • Kim, Jong Sung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • The paper investigates the previous studies about welding residual stresses in nuclear components. First, various residual stress measurement methods are reviewed in applicability. Second a finite element welding residual stress analysis technique, which was developed from the viewpoint of FFS (Fitness-For-Service) assessment, is explained. Third, characteristics of the welding residual stresses on J-groove welds and butt welds were presented via investigating the previous studies. Last, engineering formulae for residual stresses in the FFS assessment codes such as R6 and API 579/ASME FFS-1 Code is summarized.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENT BY MECHANICAL LOADING(I) -FINITE ELEMENT ANALYSIS-

  • Jang, Kyoung-Bok;Kim, Jung-Hyun;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.378-383
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non-coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

A Study on the Measurement of the Crack Length for the Real Scale Pipe Specimen (실배관 시험편의 균열 길이 측정에 관한 연구)

  • Park, Jae-Sil;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.397-402
    • /
    • 2003
  • Fracture resistance curves for concerned materials are required in order to perform elastic-plastic fracture mechanical analyses. Fracture resistance curve is built with J-integral values and crack extension values. The objective of this paper is to apply the load ratio method to the measurement of the crack length for the real scale pipe specimen. For these, the fracture test using the real scale pipe specimen and finite element analyses were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method and the load ratio method was used to measure the crack extension and the length for the real scale pipe test. Finite element analyses about the compliance of the pipe specimen were executed for applying the load ratio method according to the crack length.

  • PDF

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

Three-dimensional Flow Structure inside a Plastic Microfluidic Element (미소유체요소 내부유동의 3차원 측정 및 수치해석)

  • Lee Inwon;An Kwang Hyup;Nam Young Sok;Lee In-seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.419-422
    • /
    • 2002
  • A three-dimensional inlet flow structure inside a microfluidic element has been investigated using a micro-PIV(particle image velocimetry) measurement as well as a numerical analysis. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. For the numerical analysis, a commercial software CFD-ACE+(V6.6) was employed for comparison with experimental data. Fixed pressure boundary condition and a 39900 structured grid system was used for numerical analysis. Velocity vector fields with a resolution of $6.7{\times}6.7{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent melding process.

  • PDF

Influence of the Hole Eccentricity in Residual Stresses Measurement by the Hole-drilling Method (구멍뚫기법에 의한 잔류응력 측정시 구멍 편심의 영향)

  • Kim, Cheol;Seok, Chang-Seong;Yang, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2059-2064
    • /
    • 2000
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, one of the source of error is due to the misalignment between the drilling hole and strain gage center. This paper presents a finite element analysis of the influence of such misalignment for the uniaxial residual stress field. The stress error increases proportionally to hole eccentricity. The correction equations which easily obtain the residual stress taking account of the hole eccentricity are derived. The stress error due to the hole eccentricity decreases by approximately one percent using this equations.