• 제목/요약/키워드: Measurement cell

Search Result 1,603, Processing Time 0.038 seconds

A Spatial-domain Fourier Transform Infrared Spectrometer: Application for Analyte Measurement in Cell Culture Media

  • Jung, Byung-Jo
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.151-156
    • /
    • 2005
  • A spatial-domain Fourier Transform (FT) infrared (IR) spectrometer coupled with a PtSi Schottky­barrier IR detector plane was developed in the spectral range of $2.0-2.5{\mu}m$ for noninvasive measurement of analyte concentrations in cell culture media during cell culture processing. A key optical component of the spectrometer is a Savart plate which is a birefringent polarizer generating coherent two rays for interfering. The spectral resolution of the spectrometer was determined as $71cm^{-1}$ (${\~}0.05{\mu}m$ at $2.5{\mu}m$). Clear IR fringe patterns were imaged on the IR detector plane. The feasibility of the spectrometer for our application was investigated by measuring absorbance spectra of glucose and fetal bovine serum (FBS) which are important compounds in cell culture media. Experiment results show that the spectral quality of glucose and FBS was comparable with the standard spectra acquired with a commercial FT-IR spectrometer, presenting the feasibility of the spectrometer to perform analyte measurement in cell culture media.

Application of rotating polarizer method for small cellgap measurement (회전평광법을 이용한 낮은 셀갭 측정)

  • 김창선;이기동;윤태훈;김재창
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.158-162
    • /
    • 2000
  • Measurement of low cell gap and retardation by using a rotating polarizer method was proposed. For more precise calculation and measurement, we applied a simple numerical calculation and a retardation film that has large retardation value of 1 ~m to measurement system. From experiments, we proved that cell gap and retardation could be measured even though the values of those are so small. small.

  • PDF

Area Measurement of Organism Image using Super Sampling and Interpolation (수퍼 샘플링과 보간을 이용한 생물조직 영상의 면적 측정)

  • Choi, Sun-Wan;Yu, Suk-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1150-1159
    • /
    • 2014
  • This paper proposes a method for extracting tissue cells from an organism image by an electron microscope and getting the whole cell number and the area from the cell. In general, the difference between the cell color and the background is used to extract tissue cell. However, there may be a problem when overlapped cells are seen as a single cell. To solve the problem, we split them by using cell size and curvature. This method has a 99% accuracy rate. To measure the cell area, we compute two areas, the inside and boundary of the cell. The inside is simply calculated by the number of pixels. The cell boundary is obtained by applying super sampling, linear interpolation, and cubic spline interpolation. It improves the error rate, 18%, 19%, and 120% respectively, in comparison to the counting method that counts a pixel area as 1.

Cellular Force Measurement for Force Feedback-Based Biomanipulation (힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정)

  • Kim, Duk-Ho;Kim, Byung-Kyu;Yoon, Seok;Kang, Hyun-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF

A study on the measurement method of raw laver weight using load cell (로드셀을 이용한 생김 중량측정 방법에 관한 연구)

  • Eun-Bi MIN;Tae-Jong KANG;Eun-A YOON;Ok-Sam KIM;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • This study developed and evaluated a load cell-based automatic weighing system for the automated harvesting of laver (Porphyra tenera) in seaweed aquaculture. The current manual harvesting process was compared with the load cell-based automated system, and quantitative measurements of time, distance, and weight were conducted. The results demonstrated that the load cell-based system reduced the unloading time and increased the throughput compared to the manual method. In addition, statistical analysis confirmed that there was no significant difference from the mean in the weight measurement obtained using the load cell-based system. Based on these findings, the load cell-based automatic weighing system holds potential for efficient production and transactions in laver cultivation, contributing to cost reduction and improving the quality of life for aquaculture workers.

A Study On the Cooling Effect of the Floating Horizontal Solar Cell

  • Jae-hyuk Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.182-186
    • /
    • 2023
  • In this study, we measured the power and temperature of the floating horizontal solar cell in a coastal lagoon and compared with those of ground solar cell and water platform solar cell. Because the bottom surface of the floating horizontal solar cell was contacting the water, cooling effect was expected stronger than other cells. As a result of the measurement, the power of floating horizontal cell was 11.7% higher than that of the ground cell and 15% higher than that of the water platform cell. During the measurement, it was observed that water waves were continuously flowed on the top surface of floating horizontal cell by the wind, and it could be assumed that the cooling effect occurred not only on the bottom surface of the cell but also on the top surface. In order to analyze the cooling effect and power increasing of the horizontal cell in the wave situation, we measured power and temperature of the cell while generating artificial waves in a laboratory equipped with Zenon lamp as a solar simulator. At the height of thewater surface, the power of the cell with waves was 3.7% higherthan without waves and temperature was 4.6℃ lower. At 1 cm and 2 cm below the watersurface, power of the cell with waves was decreased by 14% and 11% than without waves while temperature was same . At 3 cm below the water surface, there was no effect of waves.

Microfluidic chip for characterization of mechanical property of cell by using impedance measurement (임피던스 측정을 이용한 세포의 변형성 분석용 미소유체 칩)

  • Kim, Dong-Il;Choi, Eun-Pyo;Chio, Sung-Sik;Park, Jung-Yul;Lee, Sang-Ho;Yun, Kwang-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this paper we propose a microfluidic chip that measures the mechanical stiffness of cell membrane using impedance measurement. The microfluidic chip is composed of PDMS channel and a glass substrate with electrode. The proposed device uses patch-clamp technique to capture and deform a target cell and measures impedance of deformed cells. We demonstrated that the impedance increased after the membrane stretched and blocked the channel.

Study about the development of voltage measurement device for fuel cell stack (연료전지 셀 전압 측정 장치 개발에 관한 연구)

  • Kirn, Tae-Hoo;Jung, Jae-Wook;Moon, Hee-Chun;Jeon, Ywun-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.569-572
    • /
    • 2007
  • In this paper, research about SVM(stack voltage monitoring) module is written, which studied to detect the failure mode of stack and stop stack driving. It is important role for SVM module to monitor the cell voltage and also, transfer those data to Supervisor controller. SVM module needs accurate measurement to detect failure mode, because the cell voltage is very small value under a few [V]. For improving these cost and technical efficiency, the electric characteristic experiment is made with the measurement circuit designed by using precision resistor.

  • PDF

A Study on the Elasticity Measurement of Fabric Using Loadcell (로드셀을 이용한 직물의 신축성 측정에 관한 연구)

  • Joo Ki-See
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1532-1536
    • /
    • 2004
  • So far, the quantified elasticity data of textile fabrics has not been present because the measurement method depends on the knowledge of measurement operators. In this paper, the special manufactured measurement equipment using road cell is presented to measure the elasticity coefficient of textile fabrics in real time. The measurement method is based on the voltage differency among textile fabrics. The textiles with strong elasticity are high voltage produced from road cell. The others are low. The presented method can be applied to visualize the textile, sew the cloth, control quality of textile fabrics. Also, these measurement datum are used to B2B electronic trading system.

Laser Diagnostic in a Plasma Display Panel Discharge Cell

  • Choi, Young-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.21-22
    • /
    • 2000
  • Laser diagnostic method in a plasma display discharge cell was introduced. The information of electric field, potential and electron temperature et al. in the surface of plasma display panel can be measured using laser induced fluorescence spectroscopy. However, because of the very small discharge dimension of ${\sim}$ 100 ${\mu}m$, the measurement attempt has almost not been performed. In this paper, the direct measurement possibility of the parameters and the recent work of electric field measurement are demonstrated in the plasma display panel.

  • PDF