Browse > Article
http://dx.doi.org/10.3807/JOSK.2005.9.4.151

A Spatial-domain Fourier Transform Infrared Spectrometer: Application for Analyte Measurement in Cell Culture Media  

Jung, Byung-Jo (Department of Biomedical Engineering, Yonsei University)
Publication Information
Journal of the Optical Society of Korea / v.9, no.4, 2005 , pp. 151-156 More about this Journal
Abstract
A spatial-domain Fourier Transform (FT) infrared (IR) spectrometer coupled with a PtSi Schottky­barrier IR detector plane was developed in the spectral range of $2.0-2.5{\mu}m$ for noninvasive measurement of analyte concentrations in cell culture media during cell culture processing. A key optical component of the spectrometer is a Savart plate which is a birefringent polarizer generating coherent two rays for interfering. The spectral resolution of the spectrometer was determined as $71cm^{-1}$ (${\~}0.05{\mu}m$ at $2.5{\mu}m$). Clear IR fringe patterns were imaged on the IR detector plane. The feasibility of the spectrometer for our application was investigated by measuring absorbance spectra of glucose and fetal bovine serum (FBS) which are important compounds in cell culture media. Experiment results show that the spectral quality of glucose and FBS was comparable with the standard spectra acquired with a commercial FT-IR spectrometer, presenting the feasibility of the spectrometer to perform analyte measurement in cell culture media.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. L. Junttila, J. Kauppinen, and E. Ikonen, 'Performance limits of stationary Fourier spectrometers,' J. Opt. Soc. Am., vol. 8, pp. 1457-1462, 1991   DOI
2 V. Saptari, 'Fourier-Transform spectroscopy Instrumentation Engineering,' A.R. Weeks de., (SPIE Press, Washington, 2003) pp. 4-9
3 M. Hashimoto and H. Hamaguchi, 'Construction of a multichannel Fourier Transform Infrared spectrometer for single-event time-resolved spectroscopy,' Appl. Spectrosc., vol. 50, pp. 1030-1033, 1996   DOI   ScienceOn
4 T. Okamoto, S. Kawata, and S. Minami, 'Optical method for resolution enhancement in photodiode array Fourier Transform spectroscopy,' Appl. Opt., vol. 24, pp. 4221-4225, 1985   DOI
5 J. Zhao and R. L. Mccreery, 'Multichannel Fourier Transform Raman spectroscopy: combining the advantages of CCDs with interferometry,' Appl. Spectrosc., vol. 50, pp. 1209-1214, 1996   DOI   ScienceOn
6 M. P. Dierking and M. A. Karim, 'Solid-block stationary Fourier-Transform spectrometer,' Appl. Opt., vol. 35, pp. 84-89, 1996   DOI
7 S. Minami, 'Fourier Transform spectroscopy using image sensors,' Mikrochimica Acta, vol. 3, pp. 309-324, 1987   DOI
8 J. V. WeedIer and M. B. Denton, 'Spatially encoded Fourier Transform spectroscopy in the ultraviolet to Near-Infrared,' Appl. Spectrosc, vol. 43, pp. 1378-1384, 1989   DOI
9 H. Aryamanya-Mugisha and R. R. Williams, 'A Fourier Transform diode array spectrometer for the UV, visible, and Near-IR,' Appl. Spectrosc, vol. 39, pp. 693-696, 1985   DOI   ScienceOn
10 B. Jung, S. Lee, I. Yang, T. Good, and G. Cote', 'Automated on-line noninvasive optical glucose monitoring in a cell culture system,' Appl. Spectrosc., vol 56, pp. 51-57, 2002   DOI
11 M. J. Padgett and A. R. Harvey, 'A static Fourier Transform spectrometer based on Wollaston prisms,' Rev. Sci. Instrum., vol. 66, pp. 2807-2811, 1995   DOI   ScienceOn
12 J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, 'Design of a static Fourier-transform spectrometer with increased field of view,' Appl. Opt., vol. 35, pp. 6698-6702, 1996   DOI
13 X. Q. Jiang, J. Kemp, Y. N. Nign, A. W. Palmer, and K. T. V. Grattan, 'High-accuracy wavelength-change measurement system based on a Wollaston interferometer incorporating a self-referencing scheme,' Appl. Opt., vol. 36, pp. 4907-4912, 1997   DOI
14 B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J.Padgett, 'An ultra-compact static Fourier-Transform spectrometer based on a single birefringent component,' Opt. Commun., vol. 130, pp. 1-6, 1996   DOI   ScienceOn
15 T. H. Barnes, 'Photodicde array Fourier Transform spectrometer with improved dynamic range,' Appl. Opt., vol. 24, pp. 3702-3706, 1985   DOI
16 N. Ebizuka, M Wakaki, Y Kobayashi, and S. Sato, 'Development of a multichannel Fourier spectrometer,' Appl. Opt., vol. 34, pp. 7899-7906, 1995   DOI
17 M. Hashimoto and S. Kawata, 'Multichannel Fourier Transform infrared spectrometer,' Appl. Opt., vol. 31, pp. 6096-6101, 1992   DOI
18 M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, 'Single-pulse, Fourier-Transform spectrometer having no moving parts,' Appl. Opt., vol. 33, pp. 6035-6040, 1994   DOI
19 T. Okamoto, S. Kawata, and S. Minami, 'Photodiode array Fourier Transform spectrometer based on a birefringent interferometer,' Appl. Specirosc, vol. 40, pp. 691-695, 1986   DOI   ScienceOn
20 W. Baird and N. S. Nogar, 'Compact, self-contained optical spectrometer', Appl. Spectrosc., vol. 49, pp. 1699-1740, 1995   DOI
21 S. Takahashi, J. S. Ahn, S. Asaka, and T. Kitagawa, 'Multichannel Fourier Transform spectroscopy using two-dimensional detection of the interferogram and its application to Raman spectroscopy,' Appl. Spectrosc., vol. 47, pp. 863-868, 1993   DOI   ScienceOn
22 M. L. Junttila, 'Stationary Fourier-Transform spectrometer,' Appl. Opt., vol. 31, pp. 4106-4112, 1992   DOI
23 D. A. Skoog, F. J. Holler, and T. A. Nieman, 'Principles of Instrumental Analysis,' (Thomson Learning, Stamford, 1998) pp. 189-140
24 M. Francon and S. Mallick, 'Polarization Interferometers: Application in Microscopy and Macroscopy,' (John Wiley & Sons, New York, 1971) pp. 19-25
25 J. Courtial, B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W. Sibbett, and M. J. Padgett, 'Static Fourier-Transform ultraviolet spectrometer for gas detection,' Appl. Opt., vol. 36, pp. 2813-2817, 1997   DOI
26 B. Jung, 'Effects of temperature on Near-Infrared spectroscopic measurement of glucose,' (Texas A&M University, College Station, 1998) pp 10-11
27 S. Kawata, K. Minami, and S. Minami, 'Superresolution of Fourier Transform spectroscopy data by the maximum entropy method,' Appl. Opt., vol. 22, pp. 3593-3598, 1983   DOI   ScienceOn
28 K. Minami, S. Kawata, and S. Minami, 'Supperresolution of Fourier Transform spectra by autoregressive model fitting with singular value decomposition,' Appl. Opt., vol. 24, pp. 162-167, 1985   DOI
29 T. H. Barnes, T. Eiju, and K. Matsuda, 'Heterodyned photodiode array Fourier Transform spectrometer,' Appl. Opt., vol. 25, pp. 1864-1866, 1986   DOI