• Title/Summary/Keyword: Measurement Noise

Search Result 3,212, Processing Time 0.032 seconds

An Effective Selection of white Gaussian Noise Sub-band using Singular Value Decomposition (특이값 분해를 이용한 효율적인 백색가우시안 잡음대역 선정 방법)

  • Shin, Seung-Min;Kim, Young-Soo;Kim, Sang-Tae;Suk, Mi-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.272-280
    • /
    • 2009
  • Measurement of the background radio noise is very important process being used in survey of radio noise environment, calculating the threshold level for the frequency occupancy measurement and so forth. First step of background radio noise measurement is to select the sample sub-band which is mostly dominated by the background white Gaussian noise (WGN) within the target band. The second step is to carry out the main measurement of radio noise on this selected sample sub-band for the representative value of the noise power. In this paper, a method for selection of sample sub-band for the effective background radio noise measurement using SVD is proposed under the assumption that background radio noise is WGN. The performance of the proposed method is compared with that of the APD method which is widely used for the same purpose. Simulation results are shown to demonstrate the high performance of the proposed method in comparison with the existing APD method.

Design and Implementation of an Indoor Particulate Matter and Noise Monitoring System (실내 미세먼지 및 소음 모니터링 시스템 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • As the COVID-19 pandemic situation worsens, the time spent indoors increases, and the exposure to indoor environmental pollution such as indoor air pollution and noise also increases, causing problems such as deterioration of human health, stress, and discord between neighbors. This paper designs and implements a system that measures and monitors indoor air quality and noise, which are representative evaluation criteria of the indoor environment. The system proposed in this paper consists of a particulate matter measurement subsystem that measures and corrects the concentration of particulate matters to monitor indoor air quality, and a noise measurement subsystem that detects changes in sound and converts it to a sound pressure level. The concentration of indoor particulate matters is measured using a laser-based light scattering method, and an error caused by temperature and humidity is compensated in this paper. For indoor noise measurement, the voltage measured through a microphone is basically measured, Fourier transform is performed to classify it by frequency, and then A-weighting is performed to correct loudness equality. Then, the RMS value is obtained, high-frequency noise is removed by performing time-weighting, and then SPL is obtained. Finally, the equivalent noise level for 1 minute and 5 minutes are calculated to show the indoor noise level. In order to classify noise into direct impact sound and air transmission noise, a piezo vibration sensors is mounted to determine the presence or absence of direct impact transmitted through the wall. For performance evaluation, the error of particulate matter measurement is analyzed through TSI's AM510 instrument. and compare the noise error with CEM's noise measurement system.

Adaptive Selective Compressive Sensing based Signal Acquisition Oriented toward Strong Signal Noise Scene

  • Wen, Fangqing;Zhang, Gong;Ben, De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3559-3571
    • /
    • 2015
  • This paper addresses the problem of signal acquisition with a sparse representation in a given orthonormal basis using fewer noisy measurements. The authors formulate the problem statement for randomly measuring with strong signal noise. The impact of white Gaussian signals noise on the recovery performance is analyzed to provide a theoretical basis for the reasonable design of the measurement matrix. With the idea that the measurement matrix can be adapted for noise suppression in the adaptive CS system, an adapted selective compressive sensing (ASCS) scheme is proposed whose measurement matrix can be updated according to the noise information fed back by the processing center. In terms of objective recovery quality, failure rate and mean-square error (MSE), a comparison is made with some nonadaptive methods and existing CS measurement approaches. Extensive numerical experiments show that the proposed scheme has better noise suppression performance and improves the support recovery of sparse signal. The proposed scheme should have a great potential and bright prospect of broadband signals such as biological signal measurement and radar signal detection.

Low Frequency Noise Characteristics of the 180nm MOSFETs

  • Yoon, Young-Chang;Lee, Ho-Cheol;Kang, In-Man;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.861-864
    • /
    • 2005
  • Performing accurate and repeatable low frequency noise measurement is critical for modeling and simulation of flicker noise. Through the accurate and repeatable on-wafer measurement, low frequency noise characteristics of the 0.18 ${\mu}m$ n-MOSFETs are discussed. And on-wafer flicker noise measurement system is presented. The on-wafer measurement system consists of cascade probe station, low noise current amplifier (SR570), and dynamic signal analyzer (HP35670A).

  • PDF

Novel Calibration Method of Noise Figure Analyzer and Measurement of Noise Correlation Matrix (잡음지수분석기의 새로운 교정방법과 잡음상관행렬 측정)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.491-499
    • /
    • 2018
  • The conventional calibration method for a noise figure analyzer is to use a noise source. This method is accompanied by a significant irregular ripple in the measurement results, because it does not consider the mismatch of the noise source and noise figure analyzer during calibration. A novel calibration method of the noise figure analyzer is proposed that considers the mismatch between the noise power and noise figure analyzer. A novel noise correlation matrix measurement technique using this method is also proposed. The method determines the noise correlation matrix and the gain of the uncorrected noise figure analyzer using uncorrected noise powers. Then, having determined the gain and noise correlation matrix, the effects of noise figure analyzers were corrected in the measurement results of the noise correlation matrix for the device under test (DUT). Through the proposed method, the measured noise parameters of a DUT showed the same degree of irregular ripples as the result of using the relative noise ratio.

Analysis of frequency characteristics and evaluation methods of elevator noise (승강기 소음의 주파수 특성 분석 및 평가 방법 고찰)

  • Kang, Min-Woo;Oh, Yang-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.607-614
    • /
    • 2021
  • Research on elevator noise has mainly focused on the cause of its occurrence and measures to reduce it. There is still insufficient research on how to accurately measure and evaluate elevator noise. There is a measurement method established as an international standard for the measurement method, but it is also difficult to apply to high-rise apartments, and there are many cases that do not closely reflect the characteristics of elevator noise. In order to solve this problem, a study was conducted to improve the elevator noise measurement method in the current standard. In this study, the characteristics of elevator noise were closely identified. Through frequency analysis of the elevator noise and other equipment, it was verified that the elevator noise is noise with different characteristics from other equipment. Elevator noise was compared with heavy floor impact noise, which is a representative structural transmission noise, as structural transmission noise. Elevator noise was compared with heavy floor impact noise, which is a representative structural transmission noise, as structural transmission noise. The correlation between bang machine and rubber ball was found to be very high at 0.9 level. As a result, it was verified that the mid-low frequency band of the elevator noise is the main structural transmission noise and cannot be evaluated together with other equipment.

Floor Impact Noise Measurement and Evaluation Method Using Impact Ball (임팩트 볼을 활용한 바닥충격음 측정 및 평가)

  • Jeon, Jin-Yong;Jeong, Jeong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1160-1168
    • /
    • 2005
  • Floor impact noise isolation performance of reinforced concrete floors was investigated through new measurement method using impact bail. Strong impact force in Bow frequency band below 63 Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight Impact noise but heavy-weight impact noise measurement and evaluation using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

Automatic Measurement of Noise and Vibration for Power seat DC motor in the vehicle (자동차 Power Seat 용 DC Motor의 소음 진동 자동 평가에 대한 연구)

  • 한형석;정의봉;김건혁;송도훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1142-1147
    • /
    • 2002
  • For the evaluation of the DC motor noise and vibration, usually it is rely on human feeling because some kinds of noise are not definitely represented by measurement Instrument such as sound meter. But when we consider time signal of the noise and vibration. It is possible to represent them. And in this paper. it is suggested to study output current shape of the motor because it Is the source to make speed and torque variation of the motor. If the current shape is not stable. it makes operating state of the motor unstable and produces noise and vibration. By analyzing signal at time and frequency of noise and vibration and current shape. it is possible to automation of the noise and vibration measurement in the Production line.

  • PDF

Application of Acoustic Holography to Automobile Aeroacoustic Noise of Low Coherence (낮은 상관 관계를 갖는 자동차 공력 소음에 대한 음향 홀로그래피)

  • Nam, Kyoung-Uk;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.561-564
    • /
    • 2004
  • Acoustic holography is applied to automobile aeroacoustic noise. Automobile aeroacoustic noise has low coherence due to multiple independent sources and measurement noise. This paper discusses the reliability of acoustic holography on this low coherence condition. Main subjects are the number and position of reference microphones, which is used for a step-by-step scanning method, and measurement noise. A real automobile experiment verifies the results.

  • PDF