Studies on Calcium Availability in Various Sources by Chicken (닭에 대(對)한 칼슘 공급원별(供給源別) 효율(?率)에 관(關)한 연구(硏究))
-
- Applied Biological Chemistry
- /
- v.18 no.3
- /
- pp.145-166
- /
- 1975
The calcium balance study was carried out to determine the availability of calcium in different sources for chicks and laying hens. The sources of calcium were calcium carbonate (CC), dicalcium phosphate-dihydrate (DCPH), and dicalcium phosphate-anhydride (DCPA) for chicks and calcium carbonate (CC) and oyster shell (OS) for laying hens. The radioisotope dilution method was employed to measure the endogenous excreta calcium during the period of balance study following preliminary feeding. A. Experimental results with chicks: No significant difference was found among feed consumption of chicks fed diets containing different sources of calcium. Body weight gain of chicks was dependent upon the source of calcium. The gain decreased in the order of DCPH, DCPA and CC (P<0.01). The feed conversion efficiency in chicks fed DCPH was better than those in chicks fed CC or DCPA. The average tibia ash contents for chicks fed different sources of calcium were similar. The DCPH was superior to CC or DCPA regarding the calcium content in tibia ash. There were no significant differences among the average calcium contents in plasma trichloracetic acid filtrate in chicks irrespective of calcium sources. The mean apparent retention of calcium by chicks fed DCPH, CC and DCPA were 65.9, 64.0 and 59.9% respectively. The calcium to phosphorus ratios in tibia ash and plasma trichloracetic acid filtrate for chicks fed different sources of calcium were similar. The chicks fed DCPH showed the partition of endogenous excreta calcium in total excreta calcium as 35.6% which was higher than 31.0 or 31.4% for chicks fed CC or DCPA. The endogenous excreta calcium per day per chick in group fed DCPH, DCPA or CC were 17.2, 16.1 and 14.6mg respectively. The true retained calcium per day per chick in group fed DCPH were 109.9 mg which was higher than those observed with CC or DCPA group (P<0.01). The true retention of calcium by the birds fed diets containing DCPH, CC or DCPA were 78.1, 75.1 or 72.6% respectively. B. Experimental results with laying hens: The feed consumption, egg production and feed converion efficiency of laying hens fed diets containing different sources of calcium were similar. Calcium concentration in plasma trichloracetic acid filtrate in laying birds fed CC was equivalent to the value obtained by feeding OS. The apparent calcium retention by laying birds fed CC was 61.6% and it was significantly more than that of hens fed OS of 51.6% (P<0.05). The partition of endogenous excreta calcium in total excreta calcium of laying hens fed CC was 23.5% and this was higher than that of birds fed OS of 15.6%. The laying hens fed CC showed 310 mg of endogenous excreta calcium per day per bird while birds fed OS showed 261mg. The true retention of calcium by layers fed CC was 70.7% against 59.2% for birds fed OS (P<0.05).
This study analyzes the effect of Computer Aided Innovation (CAI) to improve R&D Capabilities empirically. Survey was distributed by e-mail and Google Docs, targeting CTO of 235 SMEs. 142 surveys were returned back (rate of return 60.4%) from companies. Survey results from 119 companies (83.8%) which are effective samples except no-response, insincere response, estimated value, etc. were used for statistics analysis. Companies with less than 50billion KRW sales of entire researched companies occupy 76.5% in terms of sample traits. Companies with less than 300 employees occupy 83.2%. In terms of the type of company business Partners (called 'partners with big companies' hereunder) who work with big companies for business occupy 68.1%. SMEs based on their own business (called 'independent small companies') appear to occupy 31.9%. The present status of holding IT system according to traits of company business was classified into partners with big companies versus independent SMEs. The present status of ERP is 18.5% to 34.5%. QMS is 11.8% to 9.2%. And PLM (Product Life-cycle Management) is 6.7% to 2.5%. The holding of 3D CAD is 47.1% to 21%. IT system-holding and its application of independent SMEs seemed very vulnerable, compared with partner companies of big companies. This study is comprised of IT infra and IT Utilization as CAI capacity factors which are independent variables. factors of R&D capabilities which are independent variables are organization capability, process capability, HR capability, technology-accumulating capability, and internal/external collaboration capability. The highest average value of variables was 4.24 in organization capability 2. The lowest average value was 3.01 in IT infra which makes users access to data and information in other areas and use them with ease when required during new product development. It seems that the inferior environment of IT infra of general SMEs is reflected in CAI itself. In order to review the validity used to measure variables, Factors have been analyzed. 7 factors which have over 1.0 pure value of their dependent and independent variables were extracted. These factors appear to explain 71.167% in total of total variances. From the result of factor analysis about measurable variables in this study, reliability of each item was checked by Cronbach's Alpha coefficient. All measurable factors at least over 0.611 seemed to acquire reliability. Next, correlation has been done to explain certain phenomenon by correlation analysis between variables. As R&D capabilities factors which are arranged as dependent variables, organization capability, process capability, HR capability, technology-accumulating capability, and internal/external collaboration capability turned out that they acquire significant correlation at 99% reliability level in all variables of IT infra and IT Utilization which are independent variables. In addition, correlation coefficient between each factor is less than 0.8, which proves that the validity of this study judgement has been acquired. The pair with the highest coefficient had 0.628 for IT utilization and technology-accumulating capability. Regression model which can estimate independent variables was used in this study under the hypothesis that there is linear relation between independent variables and dependent variables so as to identify CAI capability's impact factors on R&D. The total explanations of IT infra among CAI capability for independent variables such as organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability are 10.3%, 7%, 11.9%, 30.9%, and 10.5% respectively. IT Utilization exposes comprehensively low explanatory capability with 12.4%, 5.9%, 11.1%, 38.9%, and 13.4% for organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability respectively. However, both factors of independent variables expose very high explanatory capability relatively for technology-accumulating capability among independent variable. Regression formula which is comprised of independent variables and dependent variables are all significant (P<0.005). The suitability of regression model seems high. When the results of test for dependent variables and independent variables are estimated, the hypothesis of 10 different factors appeared all significant in regression analysis model coefficient (P<0.01) which is estimated to affect in the hypothesis. As a result of liner regression analysis between two independent variables drawn by influence factor analysis for R&D capability and R&D capability. IT infra and IT Utilization which are CAI capability factors has positive correlation to organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability with inside and outside which are dependent variables, R&D capability factors. It was identified as a significant factor which affects R&D capability. However, considering adjustable variables, a big gap is found, compared to entire company. First of all, in case of partner companies with big companies, in IT infra as CAI capability, organization capability, process capability, human resources capability, and technology capability out of R&D capacities seems to have positive correlation. However, collaboration capability appeared insignificance. IT utilization which is a CAI capability factor seemed to have positive relation to organization capability, process capability, human resources capability, and internal/external collaboration capability just as those of entire companies. Next, by analyzing independent types of SMEs as an adjustable variable, very different results were found from those of entire companies or partner companies with big companies. First of all, all factors in IT infra except technology-accumulating capability were rejected. IT utilization was rejected except technology-accumulating capability and collaboration capability. Comprehending the above adjustable variables, the following results were drawn in this study. First, in case of big companies or partner companies with big companies, IT infra and IT utilization affect improving R&D Capabilities positively. It was because most of big companies encourage innovation by using IT utilization and IT infra building over certain level to their partner companies. Second, in all companies, IT infra and IT utilization as CAI capability affect improving technology-accumulating capability positively at least as R&D capability factor. The most of factor explanation is low at around 10%. However, technology-accumulating capability is rather high around 25.6% to 38.4%. It was found that CAI capability contributes to technology-accumulating capability highly. Companies shouldn't consider IT infra and IT utilization as a simple product developing tool in R&D section. However, they have to consider to use them as a management innovating strategy tool which proceeds entire-company management innovation centered in new product development. Not only the improvement of technology-accumulating capability in department of R&D. Centered in new product development, it has to be used as original management innovative strategy which proceeds entire company management innovation. It suggests that it can be a method to improve technology-accumulating capability in R&D section and Dynamic capability to acquire sustainable competitive advantage.
Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used