본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.
최근 물체 인식 모델의 성능을 개선하기 위한 다양한 연구가 진행 중이다. 본 논문에서는 K-means 기반 앵커박스 선정 기법을 적용한 새로운 물체 인식 모델 성능 개선 방법을 제안한다. 제안된 방법은 항만 내 설치된 컨테이너 사고를 예방하기 위한 컨테이너 사고위험도 분류 모델에 적용하여 성능 평가를 하였다. 특히, 컨테이너 사고위험도 분류 모델은 작은 물체를 인식해야 하며 이런 환경에서는 기존 물체 인식 모델 성능이 낮게 나타난다. 본 논문에서는 제안한 K-means 기반 앵커박스 선정 기법을 적용하여 물체 인식 모델 성능이 개선됨을 확인하였디.
본 논문에서는 k-Means 클러스터링을 활용한 컬러 기반 이미지 추출을 통한 색각 검사 방안 연구를 진행한다. 이를 위해, RGB 컬러스페이스 기반의 이미지를 특별한 컬러스페이스 이미지로 변환 후 컬러 패턴 분포에 따라 k-Means 클러스터링을 적용하여 다양한 형태의 이미지를 추출하는 실험을 수행한다. 위의 실험을 통해 하나의 이미지를 컬러 분포 패턴을 통해 클러스터링하여 이미지를 추출을 통하여 정상인과 색각 이상자를 판별할 수 있었다. 실험 결과, 다양한 형태와 색을 가진 이미지를 추출하여 정상인이 보는 이미지와 색각 이상자가 보는 이미지가 다른 것을 확인하였다.
본 논문에서는 텍스트 마이닝 분야에서 중요한 부분을 차지하고 있는 문서 클러스터링을 위하여 다목적 유전자 알고리즘을 제안한다. 문서 클러스터링에 있어 중요한 요소 중 하나는 유사한 문서를 그룹화 하는 클러스터링 알고리즘이다. 지금까지 문서 클러스터링에는 k-means 클러스터링, 유전자 알고리즘 등을 사용한 연구가 많이 진행되고 있다. 하지만 k-means 클러스터링은 초기 클러스터 중심에 따라 성능 차이가 크며 유전자 알고리즘은 목적함수에 따라 지역 최적해에 쉽게 빠지는 단점을 갖고 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 다목적 유전자 알고리즘을 문서 클러스터링에 적용해 보고, 기존의 알고리즘과 정확성을 비교 및 분석한다. 성능 시험을 통해 k-means 클러스터링(약 20%)과 기존의 유전자 알고리즘(약 17%)을 비교할 때 본 논문에서 제안한 다목적 유전자 알고리즘의 성능이 월등하게 향상됨을 보인다.
영상에서 타원을 추출하는 것은 얼굴 인식, 홍채 인식과 같은 컴퓨터 비전분야에서 인식할 영역을 찾는 방법으로 상당히 유용하게 사용된다. 본 논문에서는 기존의 퍼지 C-means 기법이 초기의 클러스터 개수와 중심 값에 따라서 결과가 민감하다는 단점을 보완한 개선된 퍼지 C-means 기법을 타원 추출에 적용한다. 이것은 영상 분할(Segmentation)로부터 후보 초기 클러스터 개수 및 초기 클러스터 중심을 결정하는 방법으로서 본 논문에서는 이 기법으로 영상 클러스터링을 수행하여 타원 영역 추출에 필요한 타원 후보 영역의 최소 인접 사각형(Minimum Enclosed Rectangle)을 찾아낸다. 이렇게 찾아진 최소 인접 사각형에 대해서 면적에 맞는 초기 타원들을 영역 내에 설정한 뒤 적합도(fittness)검사를 기반으로 한 타원 검증을 실시하고 적합도가 높은 영역을 타원 영역으로 추출한다.
본 논문은 이미지에서 효과적인 문자검출을 위해 색상단순화 및 윤곽선에서의 패턴 분석을 통한 문자 검출방법을 제안한다. 윤곽선 기반방법을 사용하는 문자검출 알고리즘은 단순한 배경의 이미지에서는 우수한 성능을 보이지만, 복잡한 배경의 이미지에서는 성능이 떨어지는 단점이 있다. 따라서 제안하는 방법은 복잡한 배경에서의 비문자영역을 최소화하기 위해 이미지 단순화 및 패턴분석을 통한 문자 검출 알고리즘을 제안한다. 먼저 이미지에서의 문자영역 부분을 검출하기 위하여 전처리 과정으로 K-means 군집화를 사용하여 이미지의 색상을 단순화하고, 색상 단순화 과정에서의 물체의 경계의 흐릿해짐을 개선하기 위해 고주파통과필터를 통해 물체의 경계를 강화한다. 그 후 모폴로지 기법의 팽창과 침식의 차이를 이용하여 물체의 윤곽선을 검출하고, 획득한 영역의 윤곽선 부분의 정보(높이, 너비 면적)를 구한 후 패턴분석을 통해 조건을 줌으로써 문자 후보영역을 판별하여 문자가 아닌 불필요한 영역(그림, 배경)을 제거한다. 최종 결과로 라벨링을 통해 불필요한 영역이 제거된 결과를 보여준다.
본 연구에서는 사용자에게서 취득한 뇌파의 감정분류를 시행하였고, SVM(Support Vector Machine)과 K-means 알고리즘으로 분류실험을 하였다. 뇌파 신호는 측정 한 32개의 채널 중에서, 이전 연구에서 감정분류가 뚜렷하게 나타났던 CP6, Cz, FC2, T7, PO4, AF3, CP1, CP2, C3, F3, FC6, C4, Oz, T8, F8의 총 15개의 채널을 사용하였다. 감정유도는 DVD 시청과 IAPS(International Affective Picture System)라는 사진 자극 방법을 사용하였고, 감정분류는 SAM(Self-Assessment Manikin) 방법을 사용하여 사용자의 감정상태를 파악하였다. 취득된 사용자의 뇌파신호는 FIR filter를 사용하여 전처리를 하였고, ICA(Independence Component Analysis)를 사용하여 인공산물(eye-blink)을 제거하였다. 전처리된 데이터를 FFT를 통하여 주파수 분석을 하여 특징추출(feature extraction) 하였다. 마지막으로 분류알고리즘을 사용하여 실험을 하였는데, K-means는 70%의 결과를 도출하였고, SVM은 71.85%의 결과를 도출하여 정확도가 더 우수하였으며, 이전의 SVM을 사용했던 연구결과와 비교분석하였다.
In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.
Journal of the Korean Data and Information Science Society
/
제27권3호
/
pp.609-619
/
2016
본 논문에서는 대용량 데이터를 처리 및 분석하기 위해 RHadoop 플랫폼에서 실제 데이터와 모의 실험 데이터를 가지고 K-평균 클러스터링을 구현하고, MapReduce의 컴바이너 사용여부에 따른 처리 속도를 비교하고자 한다. 또한, K-평균 클러스터링에서 최적의 군집수 결정방법을 MapReduce 프로그램으로 구현하여 실제 데이터에 적용하고자 한다. 그리고 제안된 RHadoop 플랫폼의 확장 가능성을 보이기 위해 실제 데이터에서 R의 기본 패키지에서 kmeans() 함수와 bigmemory 패키지 상에서 유용한 bigkmeans() 함수와 처리 속도를 비교하고자 한다.
k-평균 군집화는 대표적인 클러스터링 기법이다. 하지만 성능 평가 척도와 최소 개수의 군집을 정하는 방법에 대하여 통합하지 못한 한계가 있다. 본 논문에서는 수치적으로 최소 개수의 군집을 정하는 방법을 도입한다. 설명된 분산을 통합측도로 제시한다. 최소 개수의 군집과 설명된 분산 달성을 동시에 만족하려면 주성분 해석의 부공간에서 k-평균 군집화 방법을 수행해야한다는 것을 제시하고자 한다. 패턴인식과 기계학습에서 왜 주성분 분석과 k-평균 군집화를 순차적으로 수행하는가에 대한 설명을 원론적으로 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.