• Title/Summary/Keyword: Means

Search Result 31,906, Processing Time 0.044 seconds

K-means Clustering using a Grid-based Representatives

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.229-238
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis, data analysis, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters, because it is more primitive and explorative. In this paper we propose a new method of k-means clustering using the grid-based representative value(arithmetic and trimmed mean) for sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Inverted Index based Modified Version of K-Means Algorithm for Text Clustering

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors and modified version of k means algorithm to be adaptable to string vectors for text clustering. Traditionally, when k means algorithm is used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text clustering, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and modify the k means algorithm adaptable to string vectors for text clustering.

Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM (퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계)

  • Roh, Seok-Beon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1223-1229
    • /
    • 2009
  • The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

Effects of Flow Settling Means on the Performance of Fan Tester (유동안정화 장치가 홴 테스터의 성능에 미치는 영향)

  • Choi, Young-Seok;Kim, Deok-Su;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.29-34
    • /
    • 2005
  • In this study, the effect of flow settling means on the performance of fan tester were numerically investigated by using a computational fluid dynamics (CFD). The airflow rate was calculated from the pressure differential across a flow nozzle in the measuring plane and the flow settling means were generally installed in the chamber of the fan tester to provide proper airflow patterns ahead of the measuring plane. The predicted nozzle differential pressures with uniform inlet velocities were compared with the values of the ANSI/AMCA 210-99 to verify the performance of the commercial CFD code CFX 5.6. The influence of flow settling means on the measurement of airflow rate in a fan tester were discussed with various porosities and inlet jet velocities. The results obtained show that the proper band of porosities exist to meet the AMCA standard in a specified inlet jet velocity.

Clustering of Incomplete Data Using Autoencoder and fuzzy c-Means Algorithm (AutoEncoder와 FCM을 이용한 불완전한 데이터의 군집화)

  • 박동철;장병근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.700-705
    • /
    • 2004
  • Clustering of incomplete data using the Autoencoder and the Fuzzy c-Means(PCM) is proposed in this paper. The Proposed algorithm, called Optimal Completion Autoencoder Fuzzy c-Means(OCAEFCM), utilizes the Autoencoder Neural Network (AENN) and the Gradiant-based FCM (GBFCM) for optimal completion of missing data and clustering of the reconstructed data. The proposed OCAEFCM is applied to the IRIS data and a data set from a financial institution to evaluate the performance. When compared with the existing Optimal Completion Strategy FCM (OCSFCM), the OCAEFCM shows 18%-20% improvement of performance over OCSFCM.

Analysis of Partial Discharge Pattern of Closed Switchgear using K-means Clustering (K-means 군집화 기법을 이용한 개폐장치의 부분방전 패턴 해석)

  • Byun, Doo-Gyoon;Kim, Weon-Jong;Lee, Kang-Won;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.901-906
    • /
    • 2007
  • In this study, we measured the partial discharge phenomenon of inside the closed switchgear, using ultra wide band antenna. The characteristics of $\Phi-q-n$ in the normal state are stable, and confirmed at less than 0.01, but in proceeding states, about 2 times larger. And in the abnormal state, it grew hundreds of times larger compared with normal state. According to K-means analysis, if slant of discharge characteristics is a straight line close to "0" and standard deviation is small, it is in a normal state. However if we can find a peak from K-means clusters and standard deviation to be large, it is in an abnormal state.

Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm (셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성)

  • 이상섭;이종섭;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF

KMSVOD: Support Vector Data Description using K-means Clustering (KMSVDD: K-means Clustering을 이용한 Support Vector Data Description)

  • Kim, Pyo-Jae;Chang, Hyung-Jin;Song, Dong-Sung;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.90-92
    • /
    • 2006
  • 기존의 Support Vector Data Description (SVDD) 방법은 학습 데이터의 개수가 증가함에 따라 학습 시간이 지수 함수적으로 증가하므로, 대량의 데이터를 학습하는 데에는 한계가 있었다. 본 논문에서는 학습 속도를 빠르게 하기 위해 K-means clustering 알고리즘을 이용하는 SVDD 알고리즘을 제안하고자 한다. 제안된 알고리즘은 기존의 decomposition 방법과 유사하게 K-means clustering 알고리즘을 이용하여 학습 데이터 영역을 sub-grouping한 후 각각의 sub-group들을 개별적으로 학습함으로써 계산량 감소 효과를 얻는다. 이러한 sub-grouping 과정은 hypersphere를 이용하여 학습 데이터를 둘러싸는 SVDD의 학습 특성을 훼손시키지 않으면서 중심점으로 모여진 작은 영역의 학습 데이터를 학습하도록 함으로써, 기존의 SVDD와 비교하여 학습 정확도의 차이 없이 빠른 학습을 가능하게 한다. 다양한 데이터들을 이용한 모의실험을 통하여 그 효과를 검증하도록 한다.

  • PDF

The Classification of Tool Wear States Using Pattern Recognition Technique (패턴인식기법을 이용한 공구마멸상태의 분류)

  • Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

Estimating a Binomial Proportion with Bayes Estimated Imputed Conditional Means

  • Shin, Min-Woong;Lee, Sang-Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.63-73
    • /
    • 2002
  • The one of analytic imputation technique involving conditional means was mentioned by Schafer and Schenker(2000). And their derivations are based on asymptotic expansions of point estimator and their associated variance estimator, and the result of imputation can be thought of as first-order approximations to the estimators. Specially in this paper, we are presenting the method of estimating a Binomial proportion with Bayesian approach of imputed conditional means. That is, instead of using maximum likelihood(ML) estimator to estimate a Binomial proportion, in general, we use the Bayesian estimators and will show the result of estimated Imputed conditional means.