• Title/Summary/Keyword: Means

Search Result 32,019, Processing Time 0.05 seconds

An Application of k-Means Clustering to Vehicle Routing Problems (K-Means Clustering의 차량경로문제 적용연구)

  • Ha, Je-Min;Moon, Geeju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • This research is to develop a possible process to apply k-means clustering to an efficient vehicle routing process under time varying vehicle moving speeds. Time varying vehicle moving speeds are easy to find in metropolitan area. There is a big difference between the moving time requirements of two specific delivery points. Less delivery times are necessary if a delivery vehicle moves after or before rush hours. Various vehicle moving speeds make the efficient vehicle route search process extremely difficult to find even for near optimum routes due to the changes of required time between delivery points. Delivery area division is designed to simplify this complicated VRPs due to time various vehicle speeds. Certain divided area can be grouped into few adjacent divisions to assume that no vehicle speed change in each division. The vehicle speeds moving between two delivery points within this adjacent division can be assumed to be same. This indicates that it is possible to search optimum routes based upon the distance between two points as regular traveling salesman problems. This makes the complicated search process simple to attack since few local optimum routes can be found and then connects them to make a complete route. A possible method to divide area using k-means clustering is suggested and detailed examples are given with explanations in this paper. It is clear that the results obtained using the suggested process are more reasonable than other methods. The suggested area division process can be used to generate better area division promising improved vehicle route generations.

Latent Semantic Indexing Analysis of K-Means Document Clustering for Changing Index Terms Weighting (색인어 가중치 부여 방법에 따른 K-Means 문서 클러스터링의 LSI 분석)

  • Oh, Hyung-Jin;Go, Ji-Hyun;An, Dong-Un;Park, Soon-Chul
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.735-742
    • /
    • 2003
  • In the information retrieval system, document clustering technique is to provide user convenience and visual effects by rearranging documents according to the specific topics from the retrieved ones. In this paper, we clustered documents using K-Means algorithm and present the effect of index terms weighting scheme on the document clustering. To verify the experiment, we applied Latent Semantic Indexing approach to illustrate the clustering results and analyzed the clustering results in 2-dimensional space. Experimental results showed that in case of applying local weighting, global weighting and normalization factor, the density of clustering is higher than those of similar or same weighting schemes in 2-dimensional space. Especially, the logarithm of local and global weighting is noticeable.

An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation (영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘)

  • Truong, Tung X.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Conventional fuzzy c-means (FCM) algorithms have achieved a good clustering performance. However, they do not fully utilize the spatial information in the image and this results in lower clustering performance for images that have low contrast, vague boundaries, and noises. To overcome this issue, we propose an enhanced spatial fuzzy c-means (ESFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors in a $3{\times}3$ square window. To evaluate between the proposed ESFCM and various FCM based segmentation algorithms, we utilized clustering validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), and Xie-Bdni function ($V_{xb}$). Experimental results show that the proposed ESFCM outperforms other FCM based algorithms in terms of clustering validity functions.

Privacy-Preserving K-means Clustering using Homomorphic Encryption in a Multiple Clients Environment (다중 클라이언트 환경에서 동형 암호를 이용한 프라이버시 보장형 K-평균 클러스터링)

  • Kwon, Hee-Yong;Im, Jong-Hyuk;Lee, Mun-Kyu
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.7-17
    • /
    • 2019
  • Machine learning is one of the most accurate techniques to predict and analyze various phenomena. K-means clustering is a kind of machine learning technique that classifies given data into clusters of similar data. Because it is desirable to perform an analysis based on a lot of data for better performance, K-means clustering can be performed in a model with a server that calculates the centroids of the clusters, and a number of clients that provide data to server. However, this model has the problem that if the clients' data are associated with private information, the server can infringe clients' privacy. In this paper, to solve this problem in a model with a number of clients, we propose a privacy-preserving K-means clustering method that can perform machine learning, concealing private information using homomorphic encryption.

Privacy-Preserving k-means Clustering of Encrypted Data (암호화된 데이터에 대한 프라이버시를 보존하는 k-means 클러스터링 기법)

  • Jeong, Yunsong;Kim, Joon Sik;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1401-1414
    • /
    • 2018
  • The k-means clustering algorithm groups input data with the number of groups represented by variable k. In fact, this algorithm is particularly useful in market segmentation and medical research, suggesting its wide applicability. In this paper, we propose a privacy-preserving clustering algorithm that is appropriate for outsourced encrypted data, while exposing no information about the input data itself. Notably, our proposed model facilitates encryption of all data, which is a large advantage over existing privacy-preserving clustering algorithms which rely on multi-party computation over plaintext data stored on several servers. Our approach compares homomorphically encrypted ciphertexts to measure the distance between input data. Finally, we theoretically prove that our scheme guarantees the security of input data during computation, and also evaluate our communication and computation complexity in detail.

Improvement of Cognitive Rehabilitation Method using K-means Algorithm (K-MEANS 알고리즘을 이용한 인지 재활 훈련 방법의 개선)

  • Cho, Ha-Yeon;Lee, Hyeok-Min;Moon, Ho-Sang;Shin, Sung-Wook;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • The purpose of this study is to propose a training method customized to the level of cognitive abilities to increase users' interest and engagement while using cognitive function training contents. The level of cognitive ability of the users was based on the clustering based on the users' information and Mini-Mental Statue Examination-Korea Child test score using the K-means algorithm applied collaborative filtering. The results were applied to the integrated cognitive function training system, and the contents order and difficulty level of the cognitive function training area were recommended to the user's cognitive ability level. Particularly, the contents difficulty control was designed to give a high immersion feeling by applying the 'flow theory' method that users can repeatedly feel tension and comfort. In conclusion, the user-customized cognitive function training method proposed in this paper can be expected to be more effective and rehabilitative results than existing therapists' subjective setting of contents order and difficulty level.

OrdinalEncoder based DNN for Natural Gas Leak Prediction (천연가스 누출 예측을 위한 OrdinalEncoder 기반 DNN)

  • Khongorzul, Dashdondov;Lee, Sang-Mu;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.7-13
    • /
    • 2019
  • The natural gas (NG), mostly methane leaks into the air, it is a big problem for the climate. detected NG leaks under U.S. city streets and collected data. In this paper, we introduced a Deep Neural Network (DNN) classification of prediction for a level of NS leak. The proposed method is OrdinalEncoder(OE) based K-means clustering and Multilayer Perceptron(MLP) for predicting NG leak. The 15 features are the input neurons and the using backpropagation. In this paper, we propose the OE method for labeling target data using k-means clustering and compared normalization methods performance for NG leak prediction. There five normalization methods used. We have shown that our proposed OE based MLP method is accuracy 97.7%, F1-score 96.4%, which is relatively higher than the other methods. The system has implemented SPSS and Python, including its performance, is tested on real open data.

A Study on the Means of Accounting Fraud of Listed Agricultural Companies in China (중국 농업상장기업의 회계부정 수단에 관한 연구)

  • Wang, Lin;Mun, Tae-Hyoung
    • Journal of Industrial Convergence
    • /
    • v.19 no.5
    • /
    • pp.35-45
    • /
    • 2021
  • The purpose of this study is to analyze the means of accounting fraud in Chinese listed agricultural companies and to suggest methods for the prevention of accounting fraud and follow-up measures. In this study, 21 Chinese agricultural enterprises were investigated and counted by means of accounting fraud. The means of accounting fraud of listed companies related to agriculture mainly consisted of profit inflation, inflating their net assets, the disclosure of accounting information violations, asset inflation for net asset inflation, and the incomplete disclosure for accounting information violations. Among these, income forgery was the most frequent among the 21 companies surveyed as a means of accounting fraud in profit inflation. Through this study, in the field of auditing academically, it is possible to find the motives of fraudulent acts in Chinese agricultural enterprises and to obtain advice to reduce fraudulent acts, and it will be of great help in theoretical research related to accounting frauds.

K-Means Clustering with Content Based Doctor Recommendation for Cancer

  • kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.167-176
    • /
    • 2020
  • Recommendation Systems is the top requirements for many people and researchers for the need required by them with the proper suggestion with their personal indeed, sorting and suggesting doctor to the patient. Most of the rating prediction in recommendation systems are based on patient's feedback with their information regarding their treatment. Patient's preferences will be based on the historical behaviour of similar patients. The similarity between the patients is generally measured by the patient's feedback with the information about the doctor with the treatment methods with their success rate. This paper presents a new method of predicting Top Ranked Doctor's in recommendation systems. The proposed Recommendation system starts by identifying the similar doctor based on the patients' health requirements and cluster them using K-Means Efficient Clustering. Our proposed K-Means Clustering with Content Based Doctor Recommendation for Cancer (KMC-CBD) helps users to find an optimal solution. The core component of KMC-CBD Recommended system suggests patients with top recommended doctors similar to the other patients who already treated with that doctor and supports the choice of the doctor and the hospital for the patient requirements and their health condition. The recommendation System first computes K-Means Clustering is an unsupervised learning among Doctors according to their profile and list the Doctors according to their Medical profile. Then the Content based doctor recommendation System generates a Top rated list of doctors for the given patient profile by exploiting health data shared by the crowd internet community. Patients can find the most similar patients, so that they can analyze how they are treated for the similar diseases, and they can send and receive suggestions to solve their health issues. In order to the improve Recommendation system efficiency, the patient can express their health information by a natural-language sentence. The Recommendation system analyze and identifies the most relevant medical area for that specific case and uses this information for the recommendation task. Provided by users as well as the recommended system to suggest the right doctors for a specific health problem. Our proposed system is implemented in Python with necessary functions and dataset.

A Study on the Use and Meaning of the '心' Letter in 『Hwangjenaegyeog』 (『황제내경(黃帝內經)』에서 사용된 '심(心)'자(字)의 용례 분석 연구)

  • Bak, Jae-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.824-836
    • /
    • 2021
  • In this study, the use of '心' letter used in classic Chinese book of 『Hwangjenaegyeog』 and its meaning was examined. In Chinese letters, '肉' is a sign that symbolizes the body. The letters '肝', '脾', '肺', and '腎' expressing the five human organs all contain the form of '肉'. So they don't cause semantic confusion. However, the Chinese letter that means heart and mind are written as '心'. As a result, it is difficult to understand the meaning of '心'. In addition, the contents of 『Hwangjenaegyeog』 cover various fields from disease to astronomy. For this reason, a total of 286 '心' letters used in it have various meanings. The results of this study are as follows. First, it means human heart. Second, it means the human chest. Third, it refers to mind. Fourth, it means a transcendent concept like spiritual enlightenment. Fifth, it refers to pericardium. Sixth, it refers to logical thought Seventh, it means center or core, and finally does constellation. in the eastern sky of ancient Asia. The results of this study are thought to be helpful in grasping the meaning of '心' in the classical literature as well as in 『hwangjenaegyeonglyeongchu』.