• Title/Summary/Keyword: Means

Search Result 32,017, Processing Time 0.049 seconds

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.325-328
    • /
    • 2008
  • 본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 퍼지 논리 시스템의 멤버쉽 함수와 규칙의 구조는 불확실성이 존재하는 언어적인 정보 또는 수치적 데이터를 바탕으로 설계된다. 기존의 Type-1 퍼지 논리 시스템은 외부의 노이즈와 같은 불확실성을 효율적으로 취급할 수 없다. 그러나 Type-2 퍼지 논리 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 불확실성을 효과적으로 다룰 수 있다. 따라서 본 논문에서는 규칙의 전 ${\cdot}$ 후반부가 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 비교한다. 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 퍼지 집합의 정점 결정에는 입자 군집 최적화(PSO : Particle Swarm Optimization) 알고리즘을 사용한다. 마지막으로, 비선형 모델 평가에 대표적으로 이용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 입력 데이터에 인위적인 노이즈가 포함되었을 경우 Type-2 퍼지 논리 시스템이 기존의 Type-1 퍼지 논리 시스템보다 우수함을 보인다.

  • PDF

Visual inspection of overlapping confidence intervals for comparison of normal population means (정규 모집단의 평균 비교를 위한 신뢰구간 겹치기 시각화)

  • Choi, Sookhee;Han, Kyungsoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.691-699
    • /
    • 2017
  • Data analysts sometimes test the equality of two normal population means by the inspection of the overlapping of two confidence intervals. This method seems simple to use; however, it is a common statistical misconception to suppose that two normal means are not significantly different because of no overlapping. This article will present transforming the confidence interval of the mean difference to individual confidence intervals that are visualized to inspect overlapping. It will also be shown that this technique can be extended when comparing the k normal population means with equal variances.

Extraction and Analysis of Hypertension Blood flow of Brachial Artery from Color Doppler Ultrasonography by Using Possibilistic C_Means and Fuzzy C_ Means (PCM와 FCM 방법을 이용한 색조 도플러 초음파 영상에서 상완 동맥의 고혈압 혈류 추출 및 분석)

  • Park, Jae-Woo;Shim, Sung-Bo;Oh, Heung-Min;Kim, Kwang Beak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.47-50
    • /
    • 2018
  • 본 논문에서는 초음파 영상에서 환자 정보를 제거하여 ROI 영역을 추출하고, 추출된 ROI 영역에서 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화 한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완동맥 혈류 영역이 존재하는 사다리꼴 형태의 영역을 추출한다. 추출된 사다리꼴 형태의 영역에서 상완동맥 혈류영역을 정확히 추출하기 위하여 제안된 무게 중심법을 이용하여 추출된 후보 영역을 양자화 한다. 무게 중심법은 추출된 사다리꼴 영역에서 FCM 기반 무게중심법과 PCM 기반 무게중심법을 각각 계산한 후, 두 중심 간의 차이가 존재 할 경우에는 두 중심의 평균값을 새로운 무게 중심으로 설정하여 각 픽셀들을 클러스터링하여 상완 동맥 영역을 추출한다. 추출된 상완 동맥 영역에는 고혈압 영역인 빨강색 영역과 저혈압이나 혈류가 역류하는 영역인 파란색 영역이 존재한다. 추출된 상완 동맥 영역에서 고혈압 영역만을 추출하기 위해 빨강색 영역을 제외한 그 외의 영역은 제거한다. 전문의가 제공한 상완동맥 혈류 초음파 영상을 대상으로 TPR(True Positive Rate) 검사을 분석한 결과, 제안된 방법이 기존의 방법 보다 TPR 값이 높게 나타나는 것을 확인하였다.

  • PDF

Adaptive Non-Local Means Denoising Algorithm Using Down-Scaled Images (다운 스케일 영상을 이용한 적응적인 비국부 평균 노이즈 제거 방식)

  • Nguyen, Tuan-Anh;Kim, Dong Young;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.55-57
    • /
    • 2015
  • This paper presents an adaptive non-local means denoising algorithm using down-scaled images. This work provides a method to reduce artifacts and information loss around context region by increasing the number of similar patches for high activity region with down-scaled images. Experimental results demonstrate that the proposed algorithm outperforms the non-local means algorithm more than 1.5 (dB).

Characterization of Premature Ventricular Contraction by K-Means Clustering Learning Algorithm with Mean-Reverting Heart Rate Variability Analysis (평균회귀 심박변이도의 K-평균 군집화 학습을 통한 심실조기수축 부정맥 신호의 특성분석)

  • Kim, Jeong-Hwan;Kim, Dong-Jun;Lee, Jeong-Whan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1072-1077
    • /
    • 2017
  • Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.

Document Clustering Technique by K-means Algorithm and PCA (주성분 분석과 k 평균 알고리즘을 이용한 문서군집 방법)

  • Kim, Woosaeng;Kim, Sooyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.625-630
    • /
    • 2014
  • The amount of information is increasing rapidly with the development of the internet and the computer. Since these enormous information is managed by the document forms, it is necessary to search and process them efficiently. The document clustering technique which clusters the related documents through the similarity between the documents help to classify, search, and process the large amount of documents automatically. This paper proposes a method to find the initial seed points through principal component analysis when the documents represented by vectors in the feature vector space are clustered by K-means algorithm in order to increase clustering performance. The experiment shows that our method has a better performance than the traditional K-means algorithm.

A Study on Vulnerability Analysis and Countermeasure in Barcode Payment System (바코드 지불 결제 시스템 취약점 분석 및 대응방안 연구)

  • Lee, Jae Sik;Lee, Sang Hun;Jun, Moon Seog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.65-74
    • /
    • 2012
  • A barcode is a representative means of cognition. It is either printed on the package of a product or attached to it as a sticker. It is used for the fast cognition of a product at a store. It is considerably cheap to make a barcode. Also, it is possible to read it fast by using a barcode reader. Because of such convenience provided by the barcode, a new system using the barcode as a means of settling payments like a currency or a credit card has been developed. However, due to its characteristics, it is easy to reduplicate, forge or falsify a barcode easily. Therefore, this study focuses on the case of applying the system using barcodes as a means of settling payments without providing solutions for the potential weaknesses. Also, this study suggests various points to consider regarding the creation of safe barcodes as one of the related measures, while providing various methods using additional means of certification other than the one of using barcodes in addition to the way of applying complexity with barcode numbers. Throughout this study, it will be possible to safely establish and operate the payment-settlement system using barcodes.

Prediction of Flashover and Pollution Severity of High Voltage Transmission Line Insulators Using Wavelet Transform and Fuzzy C-Means Approach

  • Narayanan, V. Jayaprakash;Sivakumar, M.;Karpagavani, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1677-1685
    • /
    • 2014
  • Major problem in the high voltage power transmission line is the flashover due to polluted ceramic insulators which leads to failure of equipments, catastrophic fires and power outages. This paper deals with the development of a better diagnostic tool to predict the flashover and pollution severity of power transmission line insulators based on the wavelet transform and fuzzy c-means clustering approach. In this work, laboratory experiments were carried out on power transmission line porcelain insulators under AC voltages at different pollution conditions and corresponding leakage current patterns were measured. Discrete wavelet transform technique is employed to extract important features of leakage current signals. Variation of leakage current magnitude and distortion ratio at different pollution levels were analyzed. Fuzzy c-means algorithm is used to cluster the extracted features of the leakage current data. Test results clearly show that the flashover and pollution severity of power transmission line insulators can be effectively realized through fuzzy clustering technique and it will be useful to carry out preventive maintenance work.

k-means clustering analysis of a movie poster colors using OpenCV, and recommendation system (OpenCV를 활용한 k-means clustering 기반의 포스터 색감 분석 기법 및 추천 시스템)

  • Kim, Tae Hong;OH, Sujin;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.569-572
    • /
    • 2018
  • 본 연구는 영화 포스터를 대상으로 OpenCV를 활용하여 k-means clustering 기반의 색감을 분석하는 기법을 제안한다. 또한 이를 활용하여 영화 포스터 간의 유사도를 구하고 특정 영화와 대표색을 가지는 영화를 추천하는 시스템을 제안한다. 이를 위해 본 연구에서 다음과 같은 가정을 기반으로 한다. 첫 번째, 포스터는 해당 영화를 가장 잘 나타내는 이미지로, 포스터의 색감은 영화의 전반적인 분위기를 가진다. 두 번째, 영화 사이에 유사한 색감을 가진다면, 해당 영화들은 유사한 분위기를 가진다. 본 연구에서는 2단계로 나누어 연구를 진행한다. 우선 k-means clustering 기법을 통하여 데이터를 전처리 하여 영화별 대표색을 선정한다. 이 때, 선정된 대표색을 이용하여 각 영화간 색감 유사도를 분석한 결과를 통해, 같은 장르의 영화도는 유사도가 높음을 확인할 수 있었다. 다음으로 앞의 색감 유사도 분석을 통하여 특정 영화와 높은 유사도를 가지는 영화를 추천한다. 본 연구에서 추천된 영화는 기존의 영화 선택 기준에 비하여 사용자 본인의 취향을 반영한다. 본 연구 내용이 영화를 추천하는 과정에서 반영된다면 추천 시스템의 정확도와 사용자 만족도 향상에 기여할 것으로 기대된다.