• Title/Summary/Keyword: Mean-Shift

Search Result 645, Processing Time 0.024 seconds

Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV)

  • Hwang, Seung-Jae;Kim, Sang-Gon;Kim, Cheol-Won;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.132-138
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53kg, the structure weight is 22kg, and features a flexible wing of 19.5m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, $V_{cr}=6m/sec$, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight because of the EAV-3 is the solar-electric driven UAV. Thus, static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing with the previously designed the EAV-2 and EAV-2H/2H+ to upgrade the flight performance of the EAV-3.

Reconstruction of Magnetic Resonance Phase Images using the Compressed Sensing Technique (압축 센싱 기법을 이용한 MRI 위상 영상의 재구성)

  • Lee, J.E.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.464-471
    • /
    • 2010
  • Compressed sensing can be used to reduce scan time or to enhance spatial resolution in MRI. It is now recognized that compressed sensing works well in reconstructing magnitude images if the sampling mask and the sparsifying transform are well chosen. Phase images also play important roles in MRI particularly in chemical shift imaging and magnetic resonance electrical impedance tomography (MREIT). We reconstruct MRI phase images using the compressed sensing technique. Through computer simulation and real MRI experiments, we reconstructed phase images using the compressed sensing technique and we compared them with the ones reconstructed by conventional Fourier reconstruction technique. As compared to conventional Fourier reconstruction with the same number of phase encoding steps, compressed sensing shows better performance in terms of mean squared phase error and edge preservation. We expect compressed sensing can be used to reduce the scan time or to enhance spatial resolution of MREIT.

Detection of Multiple Salient Objects by Categorizing Regional Features

  • Oh, Kang-Han;Kim, Soo-Hyung;Kim, Young-Chul;Lee, Yu-Ra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.272-287
    • /
    • 2016
  • Recently, various and effective contrast based salient object detection models to focus on a single target have been proposed. However, there is a lack of research on detection of multiple objects, and also it is a more challenging task than single target process. In the multiple target problem, we are confronted by new difficulties caused by distinct difference between properties of objects. The characteristic of existing models depending on the global maximum distribution of data point would become a drawback for detection of multiple objects. In this paper, by analyzing limitations of the existing methods, we have devised three main processes to detect multiple salient objects. In the first stage, regional features are extracted from over-segmented regions. In the second stage, the regional features are categorized into homogeneous cluster using the mean-shift algorithm with the kernel function having various sizes. In the final stage, we compute saliency scores of the categorized regions using only spatial features without the contrast features, and then all scores are integrated for the final salient regions. In the experimental results, the scheme achieved superior detection accuracy for the SED2 and MSRA-ASD benchmarks with both a higher precision and better recall than state-of-the-art approaches. Especially, given multiple objects having different properties, our model significantly outperforms all existing models.

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

Sound-based Emotion Estimation and Growing HRI System for an Edutainment Robot (에듀테인먼트 로봇을 위한 소리기반 사용자 감성추정과 성장형 감성 HRI시스템)

  • Kim, Jong-Cheol;Park, Kui-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • This paper presents the sound-based emotion estimation method and the growing HRI (human-robot interaction) system for a Mon-E robot. The method of emotion estimation uses the musical element based on the law of harmony and counterpoint. The emotion is estimated from sound using the information of musical elements which include chord, tempo, volume, harmonic and compass. In this paper, the estimated emotions display the standard 12 emotions including Eckman's 6 emotions (anger, disgust, fear, happiness, sadness, surprise) and the opposite 6 emotions (calmness, love, confidence, unhappiness, gladness, comfortableness) of those. The growing HRI system analyzes sensing information, estimated emotion and service log in an edutainment robot. So, it commands the behavior of the robot. The growing HRI system consists of the emotion client and the emotion server. The emotion client estimates the emotion from sound. This client not only transmits the estimated emotion and sensing information to the emotion server but also delivers response coming from the emotion server to the main program of the robot. The emotion server not only updates the rule table of HRI using information transmitted from the emotion client and but also transmits the response of the HRI to the emotion client. The proposed system was applied to a Mon-E robot and can supply friendly HRI service to users.

Optimal sensor placement for mode shapes using improved simulated annealing

  • Tong, K.H.;Bakhary, Norhisham;Kueh, A.B.H.;Yassin, A.Y. Mohd
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.389-406
    • /
    • 2014
  • Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

A Development of Video Monitoring System on Real Time (실시간 영상감시 시스템 개발)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.240-244
    • /
    • 2007
  • Non-intrusive methods based on active remote IR illumination fur eye tracking is important for many applications of vision-based man-machine interaction. One problem that has plagued those methods is their sensitivity to lighting condition change. This tends to significantly limit their scope of application. In this paper, we present a new real-time eye detection and tracking methodology that works under variable and realistic lighting conditions. Based on combining the bright-pupil effect resulted from IR light and the conventional appearance-based object recognition technique, our method can robustly track eyes when the pupils are not very bright due to significant external illumination interferences. The appearance model is incorporated in both eyes detection and tracking via the use of support vector machine and the mean shift tracking. Additional improvement is achieved from modifying the image acquisition apparatus including the illuminator and the camera.

  • PDF

Virtual Subcarrier-Based Adaptive Channel Estimation Scheme of IEEE 802.11p-Based WAVE Communication System

  • Song, Mihwa;Kang, Seong-In;Lee, Won-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.88-93
    • /
    • 2020
  • The IEEE 802.11p-based wireless access in vehicular environments (WAVE) [1] communication is a method used exclusively for wireless communication on the road. This technique enables information sharing not only among moving vehicles but also between vehicles and infrastructure [2]. As part of WAVE communication, data is transmitted to and from vehicles in motion; in this case, it is difficult to determine the channel accurately in an outdoor environment owing to the Doppler shift [3]. This paper proposes a new channel estimation scheme for enhancing the reception performance of the IEEE 802.11p-based WAVE system. The proposed technique obtains the initial channel value by estimating the least square in the time domain by inserting a pilot signal for channel estimation into the IEEE 802.11p virtual subcarrier. Subsequently, a least mean square algorithm is applied to the initial channel value to update the estimated channel value. The simulation results obtained using the proposed channel estimation technique confirm its remarkable efficiency.

A Study on the Electrical Properties of Amorphous Sb-Bi-Te Thin Films (비정질 Sb-Bi-Te 박막의 전기적 특성에 관한 연구)

  • ;;D. Mangalaraj
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.220-226
    • /
    • 2002
  • Amorphous $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5 and 1.0) thin films were prepared by vacuum evaporation. The resistivity of 7he films decreases from 1.4{\times}10^{-2}$ to $8.84{\times}10^{-5}\Omega cm$ and the type of conductivity changes from p to n with the increase of the x value of the films. D.C. conduction studies on these films ate performed at various electric fields in the temperature range of 303-403 K. At low electric fields, two types of conduction mechanisms, i.e. the variable range hopping and the phonon assisted hopping are found to be responsible for the conduction, depending upon the temperature. The activation energy decreases from 0.082 to 0.076 eV in the temperature range of 303-363 K and from 0.47-0.456 eV in the second range of 363-403 K, indicating the shift of the Fermi level towards the conduction band edge and hence the change of the conduction from P to n type with the increase of the Bi concentration. Poole-Frankel emission dominates at high fields. The shape of the potential well of the localized centre is deduced and the mean free path of the charge carriers is also calculated.

Multi-scale Image Segmentation Using MSER and its Application (MSER을 이용한 다중 스케일 영상 분할과 응용)

  • Lee, Jin-Seon;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.11-21
    • /
    • 2014
  • Multi-scale image segmentation is important in many applications such as image stylization and medical diagnosis. This paper proposes a novel segmentation algorithm based on MSER(maximally stable extremal region) which captures multi-scale structure and is stable and efficient. The algorithm collects MSERs and then partitions the image plane by redrawing MSERs in specific order. To denoise and smooth the region boundaries, hierarchical morphological operations are developed. To illustrate effectiveness of the algorithm's multi-scale structure, effects of various types of LOD control are shown for image stylization. The proposed technique achieves this without time-consuming multi-level Gaussian smoothing. The comparisons of segmentation quality and timing efficiency with mean shift-based Edison system are presented.