• Title/Summary/Keyword: Mean squared error

Search Result 717, Processing Time 0.03 seconds

On Adaptive Narrowband Interference Cancellers for Direct-Sequence Spread-Spectrum Communication Systems (주파수대역 직접 확산 통신시스템에서 협대역 간섭 신호 제거를 위한 적응 간섭제거기에 관한 연구)

  • 장원석;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.967-983
    • /
    • 2003
  • In wireless spread-spectrum communication systems utilizing PN (pseudo noise) sequences, a variety of noise sources from the channel affect the data reception performance. Among them, in this paper we are concerned with the narrowband interference that may arise from the use of the spectral bands overlapped by the existing narrowband users or the intentional jammers as in military communication. The effect of this interference can be reduced to some extent at the receiver with the PN demodulation by processing gain. It is known, however, that when the interferers are strong, the reduction cannot be sufficient and thereby requiring the extra use of narrowband interference cancellers (NIC's) at the receivers. A class of adaptive NIC's are studied here based on different two cost functions. One is the chip mean-squared error (MSE) computed prior to the PN demodulation and used in the conventional cancellers. Since thses conventional cancellers should be operated at the chip rate, the computational requirements are enormous. The other is the symbol MSE computed after the PN demodulation in which case the weights of the NIC's can be updated at a lot lower symbol rate. To compare the performance of these NIC's, we derive a common measure of performance, i.e., the symbol MSE after the PN demodulation. The analytical results are verified by computer simulation. As a result, it is shown that the cancellation capability of the symbol-rate NIC's are similar or better than the conventional one while the computational complexity can be reduced a lot.

Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse (인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정)

  • Kim, Sang Yeob;Park, Kyoung Sub;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.129-134
    • /
    • 2018
  • Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

Performance Analysis of the Channel Equalizers for Partial Response Channels (부분 응답 채널을 위한 채널 등화기들의 성능 분석에 관한 연구)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.739-752
    • /
    • 2002
  • Recently, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed data transmission and high-density digital recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCR's and digital versatile recordable disks and so on. This paper is concerned with adaptive equalization of partial response channels particularly for the magnetic recording channels. Specifically we study how the PR channel equalizers work for different choices of desired or reference signals used for adjusting the equalizer weights. In doing so, we consider three different configurations that are actually implemented in the commercial products mentioned above. First of all, we show how to compute the theoretical values of the optimum Wiener solutions derived by minimizing the mean-squared error (MSE) at the equalizer output. Noting that this equalizer MSE measure cannot be used to fairly compare the three configurations, we propose to use the data MSE that is computer just before the final detector for the underlying PR system. We also express the data MSE in terms of the channel impulse response values, source data power and additive noise power, thereby making it possible to compare the performance of the configurations under study. The results of extensive computer simulation indicate that our theoretical derivation is correct with high precision. Comparing the three configurations, it also turns out that one of the three configurations needs to be further improved in performance although it has an apparent advantage over the others in terms of memory size when implemented using RAM's for the decision feedback part.

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

Accuracy Analysis of GNSS-based Public Surveying and Proposal for Work Processes (GNSS관측 공공측량 정확도 분석 및 업무프로세스 제안)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.457-467
    • /
    • 2018
  • Currently, the regulation and rules for public surveying and the UCPs (Unified Control Points) adapts those of the triangulated traverse surveying. In addition, such regulations do not take account of the unique characteristics of GNSS (Global Navigation Satellite System) surveying, thus there are difficulties in field work and data processing afterwards. A detailed procesure of GNSS processing has not yet been described either, and the verification of accuracy does not follow the generic standards. In order to propose an appropriate procedure for field surveys, we processed a short session (30 minutes) based on the scenarios similar to actual situations. The reference network in Seoul was used to process the same data span for 3 days. The temporal variation during the day was evaluated as well. We analyzed the accuracy of the estimated coordinates depending on the parameterization of tropospheric delay, which was compared with the 24-hr static processing results. Estimating the tropospheric delay is advantageous for the accuracy and stability of the coordinates, resulting in about 5 mm and 10 mm of RMSE (Root Mean Squared Error) for horizontal and vertical components, respectively. Based on the test results, we propose a procedure to estimate the daily solution and then combine them to estimate the final solution by applying the minimum constraints (no-net-translation condition). It is necessary to develop a web-based processing system using a high-end softwares. Additionally, it is also required to standardize the ID of the public control points and the UCPs for the automatic GNSS processing.

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.

Different penalty methods for assessing interval from first to successful insemination in Japanese Black heifers

  • Setiaji, Asep;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1349-1354
    • /
    • 2019
  • Objective: The objective of this study was to determine the best approach for handling missing records of first to successful insemination (FS) in Japanese Black heifers. Methods: Of a total of 2,367 records of heifers born between 2003 and 2015 used, 206 (8.7%) of open heifers were missing. Four penalty methods based on the number of inseminations were set as follows: C1, FS average according to the number of inseminations; C2, constant number of days, 359; C3, maximum number of FS days to each insemination; and C4, average of FS at the last insemination and FS of C2. C5 was generated by adding a constant number (21 d) to the highest number of FS days in each contemporary group. The bootstrap method was used to compare among the 5 methods in terms of bias, mean squared error (MSE) and coefficient of correlation between estimated breeding value (EBV) of non-censored data and censored data. Three percentages (5%, 10%, and 15%) were investigated using the random censoring scheme. The univariate animal model was used to conduct genetic analysis. Results: Heritability of FS in non-censored data was $0.012{\pm}0.016$, slightly lower than the average estimate from the five penalty methods. C1, C2, and C3 showed lower standard errors of estimated heritability but demonstrated inconsistent results for different percentages of missing records. C4 showed moderate standard errors but more stable ones for all percentages of the missing records, whereas C5 showed the highest standard errors compared with noncensored data. The MSE in C4 heritability was $0.633{\times}10^{-4}$, $0.879{\times}10^{-4}$, $0.876{\times}10^{-4}$ and $0.866{\times}10^{-4}$ for 5%, 8.7%, 10%, and 15%, respectively, of the missing records. Thus, C4 showed the lowest and the most stable MSE of heritability; the coefficient of correlation for EBV was 0.88; 0.93 and 0.90 for heifer, sire and dam, respectively. Conclusion: C4 demonstrated the highest positive correlation with the non-censored data set and was consistent within different percentages of the missing records. We concluded that C4 was the best penalty method for missing records due to the stable value of estimated parameters and the highest coefficient of correlation.

The Korean Repeatable Battery for the Assessment of Neuropsychological Status-Update : Psychiatric and Neurosurgery Patient Sample Validity

  • Park, Jong-Ok;Koo, Bon-Hoon;Kim, Ji-Yean;Bai, Dai-Seg;Chang, Mun-Seon;Kim, Oh-Lyong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.1
    • /
    • pp.125-135
    • /
    • 2021
  • Objective : This study aimed to validate the Korean version of the Repeatable Battery for the Assessment of Neuropsychological Status Update (K-RBANS). Methods : We performed a retrospective analysis of 283 psychiatric and neurosurgery patients. To investigate the convergent validity of the K-RBANS, correlation analyses were performed for other intelligence and neuropsychological test results. Confirmatory factor analysis was used to test a series of alternative plausible models of the K-RBANS. To analyze the various capabilities of the K-RBANS, we compared the area under the receiver operating characteristic (ROC) curves (AUC). Results : Significant correlations were observed, confirming the convergent validity of the K-RBANS among the Total Scale Index (TSI) and indices of the K-RBANS and indices of intelligence (r=0.47-0.81; p<0.001) and other neuropsychological tests at moderate and above significance (r=0.41-0.63; p<0.001). Additionally, the results testing the construct validity of the K-RBANS showed that the second-order factor structure model (model 2, similar to an original factor structure of RBANS), which includes a first-order factor comprising five index scores (immediate memory, visuospatial capacity, language, attention, delayed memory) and one higher-order factor (TSI), was statistically acceptable. The comparative fit index (CFI) (CFI, 0.949) values and the goodness of fit index (GFI) (GFI, 0.942) values higher than 0.90 indicated an excellent fit. The root mean squared error of approximation (RMSEA) (RMSEA, 0.082) was considered an acceptable fit. Additionally, the factor structure of model 2 was found to be better and more valid than the other model in χ2 values (Δχ2=7.69, p<0.05). In the ROC analysis, the AUCs of the TSI and five indices were 0.716-0.837, and the AUC of TSI (AUC, 0.837; 95% confidence interval, 0.760-0.896) was higher than the AUCs of the other indices. The sensitivity and specificity of TSI were 77.66% and 78.12%, respectively. Conclusion : The overall results of this study suggest that the K-RBANS may be used as a valid tool for the brief screening of neuropsychological patients in Korea.

Zircon U-Pb and Rare Earth Elements Analyses on Banded Gneiss in Euiam Gneiss Complex, Central Gyeonggi Massif: Consideration for the Timing of Depositional Event and Metamorphism of the Basement Rocks in the Gyeonggi Massif (경기육괴 중부 의암 편마암 복합체 호상편마암의 저어콘 U-Pb 연령과 미량원소: 경기육괴 기반암의 퇴적 시기와 변성작용에 대한 고찰)

  • Lee, Byung Choon;Cho, Deung-Lyong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.215-233
    • /
    • 2022
  • The zircon U-Pb and trace element analyses were performed for banded gneiss in the Euiam gneiss complex, central Gyeonggi Massif. An age of detrital zircon shows predominant age peaks at ca. 2500-2480 Ma with numerous ages ranging from Siderian to Rhyacian period. The youngest age peak of detrital zircon constrains the maximum deposition age of protolith of banded gneiss at ca. 2070 Ma. Meanwhile, the zircon rim yielded metamorphic age of ca. 1966 ± 39 Ma ~ 1918 ± 13 Ma. Based on the error range, degree of discordancy, and value of mean squared weighted deviation, we considered that the age of 1918 ± 13 Ma is the most reasonable age indicating the timing of metamorphism for banded gneiss. The zircon rims yield Ti-in-zircon crystallization temperature of 690-740℃. Therefore, we suggested that there was a high-grade metamorphic event in the Gyeonggi Massif at ca. 1918 Ma which is older than the metamorphic event that occurred in the Gyeonggi Massif during ca. 1880-1860 Ma.

Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data (다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정)

  • Kim, Ho-Rim;Yu, Soonyoung;Yun, Seong-Taek;Kim, Kyoung-Ho;Lee, Goon-Taek;Lee, Jeong-Ho;Heo, Chul-Ho;Ryu, Dong-Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.353-366
    • /
    • 2022
  • Spatial estimation of geoscience data (geo-data) is challenging due to spatial heterogeneity, data scarcity, and high dimensionality. A novel spatial estimation method is needed to consider the characteristics of geo-data. In this study, we proposed the application of Gaussian Mixture Model (GMM) among machine learning algorithms with multivariate data for robust spatial predictions. The performance of the proposed approach was tested through soil chemical concentration data from a former smelting area. The concentrations of As and Pb determined by ex-situ ICP-AES were the primary variables to be interpolated, while the other metal concentrations by ICP-AES and all data determined by in-situ portable X-ray fluorescence (PXRF) were used as auxiliary variables in GMM and ordinary cokriging (OCK). Among the multidimensional auxiliary variables, important variables were selected using a variable selection method based on the random forest. The results of GMM with important multivariate auxiliary data decreased the root mean-squared error (RMSE) down to 0.11 for As and 0.33 for Pb and increased the correlations (r) up to 0.31 for As and 0.46 for Pb compared to those from ordinary kriging and OCK using univariate or bivariate data. The use of GMM improved the performance of spatial interpretation of anthropogenic metals in soil. The multivariate spatial approach can be applied to understand complex and heterogeneous geological and geochemical features.