• 제목/요약/키워드: Mean shift outlier model

검색결과 14건 처리시간 0.018초

MULTIPLE OUTLIER DETECTION IN LOGISTIC REGRESSION BY USING INFLUENCE MATRIX

  • Lee, Gwi-Hyun;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • 제36권4호
    • /
    • pp.457-469
    • /
    • 2007
  • Many procedures are available to identify a single outlier or an isolated influential point in linear regression and logistic regression. But the detection of influential points or multiple outliers is more difficult, owing to masking and swamping problems. The multiple outlier detection methods for logistic regression have not been studied from the points of direct procedure yet. In this paper we consider the direct methods for logistic regression by extending the $Pe\tilde{n}a$ and Yohai (1995) influence matrix algorithm. We define the influence matrix in logistic regression by using Cook's distance in logistic regression, and test multiple outliers by using the mean shift model. To show accuracy of the proposed multiple outlier detection algorithm, we simulate artificial data including multiple outliers with masking and swamping.

평균 해수면 및 최극조위 자료의 이상자료 및 기준고도 변화(Level Shift) 진단 (Outliers and Level Shift Detection of the Mean-sea Level, Extreme Highest and Lowest Tide Level Data)

  • 이기섭;조홍연
    • 한국해안·해양공학회논문집
    • /
    • 제32권5호
    • /
    • pp.322-330
    • /
    • 2020
  • 부산, 목포 지점의 평균해수면(MSL)과 고극조위, 저극조위 자료의 이상자료 시계열 모델링을 수행하였다. 시계열 모델은 계절성분을 포함하는 SARIMA 모형이며, 일시적인 변화에 해당하는 이상자료(Additive Outlier, AO)와 영구적인 변화를 의미하는 기준고도 변화(Level Shift, LS)를 모델에 포함하였으며, AIC 기준에 의거하여 최적 모델을 선정하였다. 이상자료 모형의 매개변수 추정은 R 프로그램 'tsoutliers' 패키지('tso' 함수)를 이용하였다. 선정 모형을 이용하여 이상자료와 기준고도 변화 진단에 적용한 결과, 부산의 월 단위 고극조위 자료에서 2003, 2012년 발생한 태풍 매미(MAEMI), 산바(SANBA)에 의한 일시적인 수위상승을 65.5, 29.5 cm 정도로 추정하였으며, 목포의 월 단위 평균해수면 자료에서는 1983년의 영산강 하굿둑 건설 사업에 의한 기준고도 변화를 21.2 cm 정도로 추정하였다. 한편 본 연구에서 구성한 모형은 모형의 편향을 유발하는 이상자료의 영향을 포함하며, 모형에 의한 RMS 오차는 연간 자료를 사용한 경우, 부산은 MSL 1.95 cm, 고극조위, 저극조위 각각 5.11 cm, 6.50 cm이며, 목포의 경우에는 큰 조차의 영향으로 MSL 2.01 cm, 고극조위, 저극조위 각각 11.80 cm, 9.14 cm로 부산보다 다소 높게 나타났다.

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

변량모형 자료에서의 베이지안 이상점검출 (A Bayesian Outlier Detection in Random Effects Model)

  • 정윤식;이상진
    • 응용통계연구
    • /
    • 제13권1호
    • /
    • pp.115-131
    • /
    • 2000
  • 이 논문에서는 평균-이동모형(mean-shift model)을 이상점을 위한 대립모형으로 사용하여 변량모형(random effect model)에서의 이상점 검출을 위한 베이즈인자(Bayes factor)를 제시한다. 그러나 가능한 사전 정보가 없어서 무정보사전분포(noninformative prior distribution)가 사용되어야만 할 때, 대부분의 무정보사전분포는 부적절분포(improper distribution)이기 때문에 베이즌 인자에는 사전분포로부터 나온 미지의 상수가 포함되어 잇다. 이 문제를 해결하기 위해 이 논문에서는 Berger와 Pericchi (1996)가 제시한 내재베이즈인자(the intrinsic Bayes factor;IBF)를 사용한다. 또한 이 베이즈인자를 계산상 어려움을 해결하기 위해 Verdinellidh Wasserman(1995)의 일반화 세비디지키 밀도비를 이용하여 수정하고 이것을 이용하여 이상점을 검출하는 방법을 제시한다. 마지막으로 인위적으로 이상점을 포함하고 있는 데이터를 만들고 제시된 방법으로 가상실험을 하고 또한 실제 데이터에서 제시한 방법으로 이상점을 찾아보았다.

  • PDF