• Title/Summary/Keyword: Mean Square Difference

Search Result 549, Processing Time 0.036 seconds

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

A Study on the prediction of BMI(Benthic Macroinvertebrate Index) using Machine Learning Based CFS(Correlation-based Feature Selection) and Random Forest Model (머신러닝 기반 CFS(Correlation-based Feature Selection)기법과 Random Forest모델을 활용한 BMI(Benthic Macroinvertebrate Index) 예측에 관한 연구)

  • Go, Woo-Seok;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.425-431
    • /
    • 2019
  • Recently, people have been attracting attention to the good quality of water resources as well as water welfare. to improve the quality of life. This study is a papers on the prediction of benthic macroinvertebrate index (BMI), which is a aquatic ecological health, using the machine learning based CFS (Correlation-based Feature Selection) method and the random forest model to compare the measured and predicted values of the BMI. The data collected from the Han River's branch for 10 years are extracted and utilized in 1312 data. Through the utilized data, Pearson correlation analysis showed a lack of correlation between single factor and BMI. The CFS method for multiple regression analysis was introduced. This study calculated 10 factors(water temperature, DO, electrical conductivity, turbidity, BOD, $NH_3-N$, T-N, $PO_4-P$, T-P, Average flow rate) that are considered to be related to the BMI. The random forest model was used based on the ten factors. In order to prove the validity of the model, $R^2$, %Difference, NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square Error) were used. Each factor was 0.9438, -0.997, and 0,992, and accuracy rate was 71.6% level. As a result, These results can suggest the future direction of water resource management and Pre-review function for water ecological prediction.

The effects of team-based learning on nursing students' learning performance with a focus on high-risk pregnancy in Korea: a quasi-experimental study

  • Lee, Sunhee;Park, Hyun Jung
    • Women's Health Nursing
    • /
    • v.27 no.4
    • /
    • pp.388-404
    • /
    • 2021
  • Purpose: The purpose of this study was to examine the effects of team-based learning (TBL) on nursing students' communication ability, problem-solving ability, self-directed learning, and nursing knowledge related to high-risk pregnancy nursing. Methods: This quasi-experimental study used a nonequivalent control group pretest-posttest design. The participants were 91 nursing students allocated to an experimental group (n=45) and a control group (n=46). The experimental group received TBL lectures three times over the course of 3 weeks (100 minutes weekly) and the control group received instructor-centered lectures three times over the course of 3 weeks (100 minutes weekly). Data were collected by questionnaires from September to November, 2019. Data were analyzed using the chi-square test, paired t-test, and independent t-test. Results: After the intervention, the mean scores of problem-solving ability (t=-2.59, p=.011), self-directed learning (t=4.30, p<.001), and nursing knowledge (t=3.18, p=.002) were significantly higher in the experimental group than in the control group. No significant difference in communication ability was found between the experimental and control group (t=1.38, p=.171) Conclusion: The TBL program was effective for improving nursing students' problem-solving ability, self-directed learning, and nursing knowledge. Thus, TBL can be considered an effective teaching and learning method that can improve the learning outcomes of high-risk pregnancy nursing in women's health nursing classes. The findings suggest that TBL will be helpful for future nursing students to develop the nursing expertise necessary for providing nursing care to high-risk pregnant women.

Optimizing Hydrological Quantitative Precipitation Forecast (HQPF) based on Machine Learning for Rainfall Impact Forecasting (호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 최적화 방안)

  • Lee, Han-Su;Jee, Yongkeun;Lee, Young-Mi;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1053-1065
    • /
    • 2021
  • In this study, the prediction technology of Hydrological Quantitative Precipitation Forecast (HQPF) was improved by optimizing the weather predictors used as input data for machine learning. Results comparison was conducted using bias and Root Mean Square Error (RMSE), which are predictive accuracy verification indicators, based on the heavy rain case on August 21, 2021. By comparing the rainfall simulated using the improved HQPF and the observed accumulated rainfall, it was revealed that all HQPFs (conventional HQPF and improved HQPF 1 and HQPF 2) showed a decrease in rainfall as the lead time increased for the entire grid region. Hence, the difference from the observed rainfall increased. In the accumulated rainfall evaluation due to the reduction of input factors, compared to the existing HQPF, improved HQPF 1 and 2 predicted a larger accumulated rainfall. Furthermore, HQPF 2 used the lowest number of input factors and simulated more accumulated rainfall than that projected by conventional HQPF and HQPF 1. By improving the performance of conventional machine learning despite using lesser variables, the preprocessing period and model execution time can be reduced, thereby contributing to model optimization. As an additional advanced method of HQPF 1 and 2 mentioned above, a simulated analysis of the Local ENsemble prediction System (LENS) ensemble member and low pressure, one of the observed meteorological factors, was analyzed. Based on the results of this study, if we select for the positively performing ensemble members based on the heavy rain characteristics of Korea or apply additional weights differently for each ensemble member, the prediction accuracy is expected to increase.

Muscimol as a treatment for nerve injury-related neuropathic pain: a systematic review and meta-analysis of preclinical studies

  • Hamzah Adel Ramawad;Parsa Paridari;Sajjad Jabermoradi;Pantea Gharin;Amirmohammad Toloui;Saeed Safari;Mahmoud Yousefifard
    • The Korean Journal of Pain
    • /
    • v.36 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Background: Muscimol's quick onset and GABAergic properties make it a promising candidate for the treatment of pain. This systematic review and meta-analysis of preclinical studies aimed at summarizing the evidence regarding the efficacy of muscimol administration in the amelioration of nerve injury-related neuropathic pain. Methods: Two independent researchers performed the screening process in Medline, Embase, Scopus and Web of Science extracting data were extracted into a checklist designed according to the PRISMA guideline. A standardized mean difference (SMD [95% confidence interval]) was calculated for each. To assess the heterogeneity between studies, 2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression and subgroup analyses were performed to identify the potential source. Results: Twenty-two articles met the inclusion criteria. Pooled data analysis showed that the administration of muscimol during the peak effect causes a significant reduction in mechanical allodynia (SMD = 1.78 [1.45-2.11]; P < 0.0001; I2 = 72.70%), mechanical hyperalgesia (SMD = 1.62 [1.28-1.96]; P < 0.0001; I2 = 40.66%), and thermal hyperalgesia (SMD = 2.59 [1.79-3.39]; P < 0.0001; I2 = 80.33%). This significant amendment of pain was observed at a declining rate from 15 minutes to at least 180 minutes post-treatment in mechanical allodynia and mechanical hyperalgesia, and up to 30 minutes in thermal hyperalgesia (P < 0 .0001). Conclusions: Muscimol is effective in the amelioration of mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia, exerting its analgesic effects 15 minutes after administration for up to at least 3 hours.

A study on evapotranspiration using Terra MODIS images and soil water deficit index (Terra MODIS 위성영상과 토양수분 부족지수를 이용한 증발산량 산정 연구)

  • Jinuk Kim;Yonggwan Lee;Jeehun Chung;Jiwan Lee;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.119-119
    • /
    • 2023
  • 본 연구에서는 Terra MODIS(MODerate resolution Imaging Spectroradiometer) 위성영상과 토양수분 부족지수(Soil Water Deficit Index, SWDI)를 이용하여 2012년부터 2022년까지 한반도 전국의 1km 공간 증발산량을 산정하였다. 공간 증발산량을 산정하기 위한 과정은 크게 두 가지로 구분된다. 첫 번째로 MODIS의 LST(Land Surface Temperature), NDVI(Normalized Difference Vegetation Index), 선행강우 및 무강우 누적일수를 이용해 1 km 공간 토양수분을 산정하였다. 농촌진흥청 토양수분관측망 자료 중 토지피복, 토양 속성을 고려하여 선정된 70개소 토양수분 실측데이터와 비교한 결과 지점별 평균 R2 0.63~0.90으로 유의미한 상관성을 나타내었다. 산정된 공간 토양수분은 생장저해수분점과 초기위조점의 관계를 이용한 SWDI로 변환하였다. 두 번째로 순 복사량, 기온 및 NDVI의 적은 수문인자를 통해 증발산량 산정이 가능한 MS-PT(Modified Satellite-based Priestley-Taylor) 모형을 기반으로 계절별 식생과 토양수분 상태를 고려하여 1 km 공간 증발산량을 산정하였다. MS-PT 모형에서 가정한 대기 증발 변수 Diurnal temperature (DT)와 지표 수분의 상관성 문제를 해결하기 위해 DT를 SWDI로 적용하였다. 모형 결과의 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측자료와의 결정계수(Coefficient of determination, R2), RMSE(Root Mean Square Error) 및 IOA(Index of Agreement)를 산정하였다. 본 연구의 결과로 생산되는 국내 증발산량의 시, 공간적 변동성은 증발산량을 통한 수문학적 가뭄지수 및 급성 가뭄을 파악하는데 활용될 수 있을 것으로 판단된다.

  • PDF

Development of a method of the data generation with maintaining quantile of the sample data

  • Joohyung Lee;Young-Oh Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.244-244
    • /
    • 2023
  • Both the frequency and the magnitude of hydrometeorological extreme events such as severe floods and droughts are increasing. In order to prevent a damage from the climatic disaster, hydrological models are often simulated under various meteorological conditions. While performing the simulations, a synthetic data generated through time series models which maintains the key statistical characteristics of the sample data are widely applied. However, the synthetic data can easily maintains both the average and the variance of the sample data, but the quantile is not maintained well. In this study, we proposes a data generation method which maintains the quantile of the sample data well. The equations of the former maintenance of variance extension (MOVE) are expanded to maintain quantile rather than the average or the variance of the sample data. The equations are derived and the coefficients are determined based on the characteristics of the sample data that we aim to preserve. Monte Carlo simulation is utilized to assess the performance of the proposed data generation method. A time series data (data length of 500) is regarded as the sample data and selected randomly from the sample data to create the data set (data length of 30) for simulation. Data length of the selected data set is expanded from 30 to 500 by using the proposed method. Then, the average, the variance, and the quantile difference between the sample data, and the expanded data are evaluated with relative root mean square error for each simulation. As a result of the simulation, each equation which is designed to maintain the characteristic of data performs well. Moreover, expanded data can preserve the quantile of sample data more precisely than that those expanded through the conventional time series model.

  • PDF

Research on data augmentation algorithm for time series based on deep learning

  • Shiyu Liu;Hongyan Qiao;Lianhong Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1530-1544
    • /
    • 2023
  • Data monitoring is an important foundation of modern science. In most cases, the monitoring data is time-series data, which has high application value. The deep learning algorithm has a strong nonlinear fitting capability, which enables the recognition of time series by capturing anomalous information in time series. At present, the research of time series recognition based on deep learning is especially important for data monitoring. Deep learning algorithms require a large amount of data for training. However, abnormal sample is a small sample in time series, which means the number of abnormal time series can seriously affect the accuracy of recognition algorithm because of class imbalance. In order to increase the number of abnormal sample, a data augmentation method called GANBATS (GAN-based Bi-LSTM and Attention for Time Series) is proposed. In GANBATS, Bi-LSTM is introduced to extract the timing features and then transfer features to the generator network of GANBATS.GANBATS also modifies the discriminator network by adding an attention mechanism to achieve global attention for time series. At the end of discriminator, GANBATS is adding averagepooling layer, which merges temporal features to boost the operational efficiency. In this paper, four time series datasets and five data augmentation algorithms are used for comparison experiments. The generated data are measured by PRD(Percent Root Mean Square Difference) and DTW(Dynamic Time Warping). The experimental results show that GANBATS reduces up to 26.22 in PRD metric and 9.45 in DTW metric. In addition, this paper uses different algorithms to reconstruct the datasets and compare them by classification accuracy. The classification accuracy is improved by 6.44%-12.96% on four time series datasets.

Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images (Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정)

  • Son, Moobeen;Chung, Jeehun;Lee, Yonggwan;Woo, Soyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF

Digestibility of amino acids in fish meal and blood-derived protein sources fed to pigs

  • Park, Chan Sol;Adeola, Olayiwola
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1418-1425
    • /
    • 2022
  • Objective: An experiment was conducted to determine the standardized ileal digestibility (SID) of amino acids (AA) in fish meal (FM) and blood-derived protein sources including spray-dried porcine plasma (SDPP), porcine red blood cells (PRBC), and blood meal (BM) fed to growing pigs. Methods: Ten barrows (mean initial body weight of 22.1±1.54 kg) surgically fitted with T-cannulas at the distal ileum were allotted to a duplicated 5×4 incomplete Latin square design with 5 experimental diets and 4 periods. Four experimental diets were prepared to contain FM, SDPP, PRBC, or BM as the sole source of nitrogen. A nitrogen-free diet was prepared and included to estimate the basal ileal endogenous losses of AA. For the 7-day experimental period, pigs were fed for 5 days as adaptation, and ileal digesta samples were collected for 9 hours on days 6 and 7. Results: The SID of crude protein in BM (48.0%) was less (p<0.05) than in FM, SDPP, and PRBC (83.4%, 83.9%, and 87.3%, respectively). Pigs fed the diet containing BM had less (p<0.05) SID of AA, except isoleucine and proline, than those fed the diet containing FM, SDPP, or PRBC. Among FM, SDPP, and PRBC, there was no difference in the SID of crude protein and all AA, except isoleucine. The SID of isoleucine in PRBC and BM (62.7% and 48.3%, respectively) was less (p<0.05) than in FM and SDPP (88.0% and 84.9%, respectively). The SID of lysine in FM, SDPP, PRBC, and BM was 85.4%, 84.9%, 89.7%, and 51.9%, respectively. Conclusion: The SID of most AA was not different among FM, SDPP, and PRBC, but BM had lower SID of most AA than FM, SDPP, and PRBC.