Acknowledgement
본 연구는 한국기상산업기술원 호우 분야 재해영향모델을 위한 예측강우 생산기술 고도화(KMI2021-00311) 연구사업의 연구비 지원에 의해 수행되었습니다.
References
- Chen, T., He, T., 2021, The comprehensive R archive network, https://cran.r-project.org/web/packages/xgboost/vignettes/xgboost.pdf.
- Friedman, J. H., Hastie, T., Tibshirani, R., 2000, Additive logistic regression: a statistical view of boosting, Ann, Stat., 28(2), 337-374. https://doi.org/10.1214/aos/1016120463
- Ghada, W., Eastrella, N., Meanzel, A., 2019, Machine learning approach to classify rain type based on this disdrometers and cloud observations, Atmosphere, 10(5), 251-268. https://doi.org/10.3390/atmos10050251
- Hong, W. C., 2008, Rainfall forecasting by technological machine learning models, AMC, 200, 41-57.
- Kang, B. S., Lee, B. K., 2011, Application of artificial neural network to improve quantitative precipitation, J. Korea Water Resour. Assoc., 44(2), 97-107. https://doi.org/10.3741/JKWRA.2011.44.2.097
- Ke, G., Meng, Q., Finely, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T. Y., 2017, LightGBM: A highly efficient gradient boosting decision tree, 31st conference on neural information processing systems, Long beach, CA, USA, 3149-3157.
- Ko, C. M., Jeong, Y. Y., Lee, Y. M., Kim, B. S., 2020, The development of a Quantitative Precipitation Forecast correction technique based on machine learning for hydrological applications, Atmosphere, 11(1), 111-129. https://doi.org/10.3390/atmos11010111
- Rha, D. K., Kwak, C. H., Suh, M. S., Hong, Y., 2005, Analysis of the characteristics of precipitation over South Korea in terms of the associated synoptic patterns: a 30 years climatology (1973~2002), The Journal of The Korean Earth Science Society, 26(7), 732-743.
- Sumi, S. M., Zaman, M. F., Hirose, H., 2012, A Rainfall forecasting method using machine learning models and its application to the Fukuoka city case, Int. J. Appl. Math. Comput. Sci., 22(4), 841-854. https://doi.org/10.2478/v10006-012-0062-1
- Valipour, M., Sefidkouhi, G., Ali, M., Raeini-Sarjaz, M., Guzman, S. M., 2019, A Hybrid data-driven machine learning technique for evapotranspiration modeling various climates, Atmosphere, 10(6), 311-325. https://doi.org/10.3390/atmos10060311
- Zamami J. M., Cao, C., Ni, X., Bashir, B., Talebiesfandarani, S., 2019, PM2.5 Prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data, Atmosphere, 10(7), 373-391. https://doi.org/10.3390/atmos10070373