• Title/Summary/Keyword: Mean Flow Velocity

Search Result 1,028, Processing Time 0.031 seconds

A CFD Analysis of Gas Flow through an Ultrasonic Meter (초음파 유량계를 통하는 기체유동의 CFD 해석)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Lee, Ho-Joon;Hwang, Shang-Yoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF

Enhancement Technique of Discharge Measurement Accuracy Using Kalesto Based on Index Velocity Method in Mountain Stream, Jeju Island (지표유속법 기반 제주 산지형 하천 Kalesto 유량 정확도 향상 기법)

  • Kim, Dong-Su;Yang, Sung-Kee;Kim, Soo-Jeong;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.371-381
    • /
    • 2015
  • In the mountain streams in Jeju Island, strong turbulence and roughness usually made it nearly impossible to utilize most of intrusive instrumentation for streamflow discharge measurements. Instead, a non-intrusive fixed electro-magnetic wave surface velocimetry (fixed EWSV: Kalesto) became alternatively popular in many representative streams to measure stream discharge seamlessly. Currently, Kalesto has shown noteworthy performance with little loss in flood discharge measurements and also has successfully provided discharge for every minute. However, Kalesto has been operated to regard its measured one-point velocity as the representative mean velocity for the given cross-section. Therefore, it could be highly possible to potentially encompass discharge measurements errors. In this study, we analyzed the difference between such Kalesto discharge measurements and other alternative concurrent discharge measurements such as Acoustic Doppler Current Profiler (ADCP) and mobile EWSV which were able to measure velocity in multi-points in the cross-section. Consequently, Kalesto discharge deviated from ADCP discharge in amount of 48% for relatively low flow, and more than 20% difference for high flow compared with mobile EWSV discharge measurements. These results indicated that the one-point velocity measured by Kalesto should be used as a cross-sectional mean velocity, rather it should be accounted for as an index-velocity in conjunction with directly measured cross-sectional mean velocity by using more reliable instrumentations. After inducing Kalesto Discharge Correction Coefficient (KDCC) that actually means relationship between index velocity and cross-sectional mean velocity, the corrected discharge from Kalesto was significantly improved. Therefore, we found that index velocity method should be applied to obtain better accuracy of discharge measurement in case of Kalesto operation.

A study on the characteristics of gas flow in inlet port of 2 cycle engine (2사이클 기관 흡기 포오트의 가스 유동 특성에 관한 연구)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.725-730
    • /
    • 1987
  • An experimental study of the air flow through inlet pipe of reciprocating two-cycle engine was investigated under motored condition. Measurements of the two components of velocity, velocity fluctuation, and the other behavior of inlet flow have been obtained by laser Doppler anemometer system. The research engine comprised the cylinder head of a two-cycle engine which mounted on optical spacer with measuring window and glass inlet entry for laser anemometer measurement. A dual beam laser Doppler anemometer was used with conventional forward scattered method and comprised argon-ion laser, frequency shifter with Bragg cell module, and the signal processor. Measurements of mean velocity fluctuation of inlet flow for different engine speeds, measuring positions, and the changes in cylinder volume are investigated. The results presented show that the changes in engine speed is shown to be strongly influenced on the mean velocity of inlet air. The effect of measuring position and cylinder volume on the inlet velocity was also investigated for the inlet port entry and is shown to be small compared to the engine speed.

A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields (난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

The Flow Characteristics in Dividing Ducts (분지덕트 내의 유동특성)

  • Lee, Haeng-Nam;Park, Gil-Moon;Lee, Duck-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.19-25
    • /
    • 2002
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean vorticity, and total pressure distributions are obtained for three different Reynolds numbers (578, 620, 688) using PIV measurements and CFD analysis. Also, two different dividing ducts ($90^{\circ},\;60^{\circ}$) were selected for study. The results of this study would be useful to the engineers designing flow systems for heating, ventilation, air conditioning and waste-water purification plants.

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

Development of Mean Flow Model for Depth-Limited Vegetated Open-Channel Flows (수심의 제한을 받는 침수식생 개수로의 평균흐름 예측모형 개발)

  • Yang, Won-Jun;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.823-833
    • /
    • 2010
  • Open-channel flows with submerged vegetation show two distinct flow structures in the vegetation and upper layers. That is, the flow in the vegetation layer is featured by relatively uniform mean velocity with suppressed turbulence from shear, while the flow in the upper layer is akin to that in the plain open-channel. Due to this dual characteristics, the flow has drawn many hydraulic engineers' attentions. This study compares layer-averaged models for flows with submerged vegetation. The models are, in general, classified into two-layer and three-layer models. The two-layer model divides the flow depth into vegetation and upper layers, while the three-layer model further divides the vegetation layer into inner and outer vegetation layers depending on the influence of the bottom roughness. This study compares the two-layer model and the three layer-model. It is found that the two-layer model predicts better the average value of the velocity and the prediction by the three-layer model is sensitive to Reynolds shear stress. In the three-layer model, the mean flow in the inner vegetation layer does not affect the flow seriously, which motivates the proposal of the modified two-layer model. The two-layer model, capable of predicting non-uniform mean velocity, is based on the Reynolds stress which is linear and of power form in the upper and vegetation layers, respectively. Application results reveal that the modified two-layer model predicts the mean velocity at an accuracy similar to the two- and three-layer models, but it predicts poorly in the case of very low vegetation density.

PIV Analysis of Cubic Channel Cavity Flow (입방형 채널 캐비티 유동의 PIV 해석)

  • 조대환;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.557-563
    • /
    • 1997
  • The unsteady flow in three-dimensional cubic cavity with narrow channel at upper region is investigated experimentally for three kinds of Reynolds number, 1*10/sup 4/, 3*10/sup 4/ and 5*10/sup 4/ based on the cavity width and cavity inlet mean flow velocity. Instant velocity vectors are obtained simultaneously at whole field by PIV(Particle Image Velocimetry). Wall pressure distributions are estimated using Poisson equation from the velocity data. Results of PIV reveal that severe unsteady flow fluctuation within the cavity are remarkable at all Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving flow is collided with the clock-wise rotating main primary vortex. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the entire region and spanwise kinetic energy migration is conspicuous.

  • PDF

Flow Visualization of Turbulent Flow around a Sphere (구(球) 주위 난류유동의 정량적 가시화)

  • Jang, Young-Il;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.50-53
    • /
    • 2005
  • The turbulent flow around a sphere was investigated in a streamwise meridian plane using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5,300 and PIV measurements in a circulating water channel at Re=7,400. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. In addition, the mean flow pattern extracted by particle tracing method in water tunnel at Re= 14,500 reveals two distinct comparable toroidal(not closed) vortices in the recirculation region. The mean velocity field measured using a PIV technique demonstrates the detailed wake configuration of close symmetric recirculation and near-wake configuration with two toroidal vortices, reversed velocity zone and vorticity contours.

  • PDF

A Study on the Characteristics of Flow with Polymer Additives (고분자물질 첨가에 의한 유동특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF