• 제목/요약/키워드: Mean Flow Analysis

검색결과 871건 처리시간 0.026초

혼류 펌프의 성능 해석 (Performance prediction of mixed-flow pumps)

  • 오형우;윤의수;정명균;하진수
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.70-78
    • /
    • 1998
  • The present study has tested semi-empirical loss models for a reliable performance prediction of mixed-flow pumps with four different specific speeds. In order to improve the predictive capabilities, this paper recommends a new internal loss model and a modified parasitic loss model. The prediction method presented here is also compared with that based on two-dimensional cascade theory. Predicted performance curves by the proposed set of loss models agree fairly well with experimental data for a variety of mixed-flow pumps in the normal operating range, but further studies considering 'droop-like' head performance characteristic due to flow reversal in mixed-flow impellers at low flow range near shut-off head are needed.

입방형 채널 캐비티 유동의 PIV 해석 (PIV Analysis of Cubic Channel Cavity Flow)

  • 조대환;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.557-563
    • /
    • 1997
  • The unsteady flow in three-dimensional cubic cavity with narrow channel at upper region is investigated experimentally for three kinds of Reynolds number, 1*10/sup 4/, 3*10/sup 4/ and 5*10/sup 4/ based on the cavity width and cavity inlet mean flow velocity. Instant velocity vectors are obtained simultaneously at whole field by PIV(Particle Image Velocimetry). Wall pressure distributions are estimated using Poisson equation from the velocity data. Results of PIV reveal that severe unsteady flow fluctuation within the cavity are remarkable at all Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving flow is collided with the clock-wise rotating main primary vortex. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the entire region and spanwise kinetic energy migration is conspicuous.

  • PDF

PIV를 이용한 충돌제트의 유동특성에 관한 연구 (The Study on Flow Characteristics of Impinging Jet Using PIV)

  • 김동균;김정환;김시범;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.717-722
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozzle inlet velocity. An circular sharp edged nozzle type$(45^{\circ})$ was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow. In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers(Re=1500, 3000, 4500, 6000 and 7500).

  • PDF

Single and High-Lift Airfoil Design Optimization Using Aerodynamic Sensitivity Analysis

  • Kim, Chang Sung;Lee, Byoungjoon;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.20-27
    • /
    • 2001
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. The capability of the present sensitivity codes to treat complex geometry is successfully demonstrated by analyzing the flows over multi-element airfoils on Chimera overlaid grid systems.

  • PDF

인산형 연료전지의 가스유로방향 변화에 따른 열 및 물질전달해석 (Heat and Mass Transfer Analysis of Phosphoric Acid Fuel Cell According to Variation of gas Flow passage)

  • 전동협;정영식;채재우
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1338-1346
    • /
    • 1994
  • The objective of this study is to investigate the effect of various parameters, such as temperature, mean current density and voltage on the performance of phosphoric acid fuel cell (PAFC) by numerical analysis. Two types of flow passages, which are Z-parallel type and Z-counter type, are evaluated to obtain the best current density and temperature distribution. Parametric studies and sensitivity analysis of the PAFC system's operation in single cell are accomplished. A steady state simulation of the entire system is developed using nonlinear ordinary differential equations. The finite difference method and trial and error procedures are used to obtain a solution.

개수로에서의 부정류 수문곡선 재현을 위한 유량공급장치의 개발 및 정확도 분석 (Development and Accuracy Analysis of the Discharge-Supply System to Generate Hydrographs for Unsteady Flow in the Open Channel)

  • 김서준;김상혁;윤병만;지운
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.783-794
    • /
    • 2012
  • 시간에 따른 하도의 수위 및 유량 변화에 영향을 많이 받는 수리구조물의 설계에 있어서 부정류 흐름 해석은 반드시 필요하다. 일반적으로 부정류 흐름 해석에는 수치모형이 많이 활용되고 있으나 수치모형의 검 보정을 위한 현장 자료의 획득이 어려운 경우가 많다. 또한 자료구축이 가능하더라도 인력과 비용이 많이 소모되며, 측정 정확도를 신뢰하기 어려운 경우가 많다. 이러한 경우 수치모형의 검 보정을 위해 부정류 수리실험을 통해 획득되는 자료를 활용하는 것이 대안이 될 수 있다. 따라서 본 연구에서는 다양한 형태의 부정류 수문곡선을 실험에서 재현할 수 있는 유량공급장치를 개발하고자하며, 개발된 부정류 유량공급장치를 이용하여 수리실험 수로에서 재현되는 수문곡선과 목표 수문곡선을 비교 분석함으로써 재현 정확도를 정량적으로 평가하고자 한다. 본 연구에서는 유량이 급격하게 증가 또는 감소하는 사각형 형태, 첨두유량 발생 시간이 짧은 삼각형 형태 및 일반적인 홍수 수문곡선 형태의 종(bell) 형태 수문곡선을 대상으로 재현 오차 및 Root Mean Square Error (RMSE)를 분석하였다. 재현 정확도 분석 결과, 사각형 형태의 수문곡선 재현 오차는 약 59% 정도로 가장 크게 나타났으며, 삼각형 형태의 수문곡선은 단일첨두와 이중첨두 형태 모두 약 10% 정도의 재현 오차가 나타났지만 홍수 수문곡선 형태인 종 모양의 수문곡선의 재현 오차는 최대 2% 이내인 것으로 나타났다.

주덕트의 단면적 변화가 분지덕트의 유량분배에 미치는 영향 (Effect of a Variation of a Main Duct Area on Flow Distribution of Each Branch)

  • 이재호;김범준;조대진;윤석주
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.386-395
    • /
    • 2005
  • With the development of a living standard, the importance of indoor air conditioning system in all kinds of buildings and vehicles has increased. A lot of researches on energy losses in a duct and various kinds of flow pattern in branches or junctions have been carried out over many years, because the primary object of a duct system used in HVAC is to provide equal flow rate in the interior of each room by minimizing pressure drop. In this study, to get equal flow distribution in each branch, a blockage is applied to the rectangular duct system. The flow analysis for flow distribution of a rectangular duct with two branches was performed by CFD. By using SIMPLE algorithm and finite volume method, flow analysis is performed in the case of 3-D, incompressible, turbulent flow. Also, the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent fluid flow. The distribution diagrams of static pressure, velocity vector, turbulent energy and kinetic energy in accordance with variation of Reynolds number and blockages location in a rectangular duct show that flow distribution at duct outlets is improved by a blockage. In this rectangular duct system, mean velocity and flow rate distribution in two branch outlets are nearly constant regardless of variation of Reynolds number, and a flow pattern of the internal duct has a same tendency as well.

매끄러운 하상-거친 하상의 횡방향 연속구조를 갖는 개수로 흐름의 3차원 수치모의 (3-D Numerical Simulation of Open-Channel Flows over Smooth-Rough Bed Strips)

  • 최성욱;박문형;강형식
    • 대한토목학회논문집
    • /
    • 제26권6B호
    • /
    • pp.573-581
    • /
    • 2006
  • 본 연구에서는 레이놀즈응력모형을 이용하여 매끄러운 하상-거친 하상의 횡방향 연속구조를 갖는 개수로 흐름을 수치모의하였다. 개발된 모형을 이용하여 평균유속 및 난류량을 계산하고 기존의 실험결과와 비교하였다. 그 결과 레이놀즈응력모형이 매끄러운 하상-거친 하상의 횡방향 연속구조를 갖는 개수로 흐름에서의 평균유속과 난류구조를 비교적 유사하게 예측하는 것으로 나타났다. 특히 이차흐름 벡터도를 계산한 결과 매끄러운 하상에서는 상향류가, 거친 하상에서는 하향류가 나타나는 격자형 이차흐름이 발생하였으며, 이와 같은 격자형 이차흐름은 평균유속 및 난류량 분포에 큰 영향을 미치는 것을 확인하였다. 또한 와도 방정식의 각 항을 비교하여 개수로 흐름에서의 이차흐름의 성인(成因)을 분석하였다.

Genetic Diversity in Korean Populations of Glycine soja (Fabaceae)

  • Myong Gi Chung
    • Journal of Plant Biology
    • /
    • 제38권1호
    • /
    • pp.39-45
    • /
    • 1995
  • Glycine soja Sieb. et Zucc., a predominantly selfing annual, has been served as a reservoir of germplasm for soybean, G. max (L.) Merr., cultivar improvement. This study describes the levels and distribution of genetic variation within and among 22 Korean populations of G. soja using starch gel electrophoresis. The species maintains very similar levels of genetic variability within populations observed in most other annuals. At the population level, the mean percent of polymorphic loci (P) was 32.6%, mean number of allele per locus (A) was 1.32, and mean expected heterozygosity (He) was 0.112. In addition, total genetic diversity (HT) calculated only for polymorphic loci was 0.347. However, significant differences in allele frequencies among populations were found for all loci (P<0.001 in each case) and, on average, about 70% of the total variation in the species is common to all populations. Indirects estimate of the number of migrants per generation (Nm=0.58, calculated from mean GST) indicates that gene flow is low among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygote deficiency in most populations and at all loci. This indicates that most populations sampled may have been substructed largely due to inbreeding (predominantly selfing) and restricted gene flow, coupled with founder effect and genetic drift. Considering a high genetic divergence among populations, it is recommended that several Korean populations of the species should be preserved, especially such as populations in the eastern and southeastern Korean peninsula with high variation.

  • PDF

Wind loads on fixed-roof cylindrical tanks with very low aspect ratio

  • Lin, Yin;Zhao, Yang
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.651-668
    • /
    • 2014
  • Wind tunnel tests are conducted to investigate the wind loads on vertical fixed-roof cylindrical tanks with a very low aspect ratio of 0.275, which is a typical ratio for practical tanks with a volume of $100,000m^3$. Both the flat-roof tank and the dome-roof tank are investigated in present study. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. It is shown that the wind loads are closely related to the behavior of flow around the structure. For either tank, the mean wind pressures on the cylinder are positive on the windward area and negative on the sides and the wake area, and the mean wind pressures on the whole roof are negative. The roof configurations have no considerable influence on the mean pressure distributions of cylindrical wall in general. Highly non-Gaussian feature is found in either tank. Conditional sampling technique, envelope method, and the proper orthogonal decomposition (POD) analysis are employed to investigate the characteristics of wind loads on the cylinder in more detail. It is shown that the patterns of wind pressure obtained from conditional sampling are similar to the mean pressure patterns.An instantaneous pressure coefficient can present a wide range from the maximum value to the minimum value. The quasi-steady assumption is not valid for structures considered in this paper according to the POD analysis.