• Title/Summary/Keyword: Mean Flow

Search Result 3,203, Processing Time 0.032 seconds

A Numerical Simulation on Three-Dimensional Hydrodynamic Characteristics of Wave Height and Flow around Asymmetric Submerged Breakwaters (비대칭 잠제 주변의 파고 및 흐름의 3차원적인 수리특성에 관한 수치모의)

  • Lee, Woo-Dong;Hur, Dong-Soo;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.19-27
    • /
    • 2011
  • In case of constructing submerged breakwaters for the purpose of preventing coastal erosion, the number of submerged breakwaters, as well as their asymmetry is dependent on the field conditions. The aim of the present study was to examine the 3-D hydrodynamic characteristics (3-D wave field, wave height, mean water level, and mean flow) around the asymmetric submerged breakwaters using a 3-D numerical model, LES-WASS-3D, which was validated through a comparison with existing experimental data and showed fairly nice agreement. From the numerical results, the wave height, mean water level, and mean flow are discussed in relation with the variation in the breakwater length ratio.

Analysis of Cylinder Swirl Flow and Lean Combustion Characteristics of 3rd Generation LPLI(Liquid Phase LPG Injection) Engine (제3세대 LPLI 엔진 연소실내 스월유동 및 희박연소 특성 해석)

  • Kang, Kern-Yong;Lee, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • The intake swirl motion, as one of dominant effects for an engine combustion. is very effective for turbulence enhancement during the compression process in the cylinder of 2-valve engine. Because the combustion flame speed is determined by the turbulence that is mainly generated from the mean flow of the charge air motion in intake port system. This paper describes the experimental results of swirl flow and combustion characteristics by using the oil spot method and back-scattering Laser Doppler velocimeter (LDV) in 2-valve single cylinder transparent LPG engine using the liquid phase LPG injection. For this. various intake port configurations were developed by using the flow box system and swirl ratios for different intake port configurations were determined by impulse swirl meter in a steady flow rig test. And the effects of intake swirl ratio on combustion characteristics in an LPG engine were analyzed with some analysis parameters that is swirl ratio. mean flow coefficient, swirl mean velocity fuel conversion efficiency. combustion duration and cyclic variations of indicated mean effective pressure(IMEP). As these research results, we found that the intake port configuration with swirl ratio of 2.0 that has a reasonable lean combustion stability is very suitable to an $11{\ell}$ heavy-duty LPG engine with liquid phase fuel injection system. It also has a better mean flow coefficient of 0.34 to develope a stable flame kernel and to produce high performance. This research expects to clarify major factor that effects on the design of intake port efficiently with the optimized swirl ratio for the heavy duty LPG engine.

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea (여자만 서수도 해역의 조류 및 조석평균류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

Changes in Posterior Cerebral Artery Blood flow Velocity Following Head rotation and body Positioning (머리회전과 측정자세에 따른 뒤대뇌동맥의 혈류속도 변화)

  • Park, Min-Chull;Kim, Jong-Soon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.115-120
    • /
    • 2015
  • PURPOSE: Vertebrobasilar insufficiency (VBI) should be carefully assessed in patient for whom manipulation of the cervical spine is to be undertaken. The purpose of this study was to investigate the changes in posterior cerebral artery blood flow velocity following head and body positioning by transcranial doppler ultrasonography (TCD) in healthy subjects. METHODS: Twenty two healthy female (mean age $20.77{\pm}1.30yrs.$) participants volunteered to participate in the study. None of the participants had a history of neck pain or headache within the last 6 months. To evaluate the cerebral blood flow, we measured the mean flow velocity of the posterior cerebral artery unilaterally (right side). The blood flow velocity was measured under 3 different head positions (in a neutral head position, ipsilateral head rotation and contralateral head rotation position) and 2 different body conditions (supine position and sitting position). RESULTS: The mean blood flow velocity of posterior cerebral artery was decreased in body positioning from supine to sitting (p<.05), but the decreased rate of blood flow velocity in posterior cerebral artery did not change significantly between ipsilateral head rotation and contralateral head rotation (p>.05). CONCLUSION: These result of our study show that body positioning (sitting and supine) affect the blood flow velocity in posterior cerebral artery.

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

NUMERICAL STUDY OF MODULATED TAYLOR-COUETTE FLOW (진동하는 Taylor-Couette 유동에 대한 수치적 연구)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Mutabazi, Innocent
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.32-39
    • /
    • 2010
  • In this study, we consider Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the mean angular velocity, amplitude and frequency of the oscillation, we investigate the characteristics of modulated Taylor vortices. At a constant mean angular velocity, Taylor vortices intensify as the amplitude increases and frequency decreases. The axial wavenumber is calculated by spectral analysis. When the frequency varies, the axial wavenumber does not change at a constant mean angular velocity and amplitude. But, the axial wavenumber increases, as the mean angular velocity increases.

The Influences of Factors on Turbulence Intensity in Combustion Chamber (연소실내의 난류강도에 미치는 각종 인자의 영향)

  • 한성빈;이상준;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.793-804
    • /
    • 1994
  • Turbulence intensity caused by piston movement was almost as same tendency as the piston speed. The turbulence intensity was increased from 0.39m/s to 0.79m/s when mean piston speed increased from 2.33m/s to 4.67m/s. In this case the maximum turbulence intensity caused by piston speed was decreased about 82 percent near the top dead center at the end of compression stroke. The maximum turbulence intensity was created from 12m/s to 22m/s when inlet flow velocity was increased from 22m/s to 45m/s. Also turbulence intensity caused by inlet flow velocity was linearly increased from 0.97m/s at top dead center at the end of compression stroke. The ratio of turbulence intensity and mean inlet flow velocity was about 3 percent for inlet flow velocity.

Measurement Method of Mean Flow Velocity Using the Plane Waves in the Pipe (관내 평면파를 이용한 유속 측정기술)

  • Cheung Wan-Sup;Kwon Hyu-Sang;Park Kyung-Am;Paik Jong-Seung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.243-246
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity not only over the cross sectional area but also along the pipe by exploiting the acoustic plane waves in the pipe. When fluid flows in the pipe and two plane waves propagate oppositely through the medium in it, the flow velocity causes a change of the wave number of the plane waves. The wave number of the positive going plane wave decreases but oppositely that of negative going one increases in comparison to no flow of the medium in the pipe. Theoretical backgrounds of this method are in details discussed and measurement results of the mean flow velocity are illustrated to reveal the feasibility and effectiveness of the suggested technique.

  • PDF

Turbine Design for Turbo-compound System to Recover Exhaust Gas Energy Using 1-D Mean Line Flow Model (1-D Mean Line Flow Model을 이용한 엔진 배기에너지 회수를 위한 터보컴파운드 시스템용 터빈 설계)

  • Jang, Jinyoung;Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • The aim of this study was to find the initial design value of turbine blade for electrical type turbocompound system generating 10 kW. Turbocompound is one of the waste heat recovery system applying to internal combustion engine to recover exhaust gas energy that was about 30 % of total input energy. To design the turbine blade, 1-D mean line flow model was used. Exhaust gas temperature, pressure, flow rate and turbine rotating speed was fixed as primary boundary conditions. The velocity triangles was defined and used to determine the rotor inlet radius and width, the rotor outlet radius at shroud and radius at hub, the rotor flow angles and the number of blades.