• Title/Summary/Keyword: Mean Air Temperature

Search Result 841, Processing Time 0.028 seconds

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.

Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques (기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정)

  • HAHM, DOSHIK;PARK, SOYEONA;CHOI, SANG-HWA;KANG, DONG-JIN;RHO, TAEKEUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • Accurate evaluation of sea-to-air $CO_2$ flux and its variability is crucial information to the understanding of global carbon cycle and the prediction of atmospheric $CO_2$ concentration. $fCO_2$ observations are sparse in space and time in the East Sea. In this study, we derived high resolution time series of surface $fCO_2$ values in the southwest East Sea, by feeding sea surface temperature (SST), salinity (SSS), chlorophyll-a (CHL), and mixed layer depth (MLD) values, from either satellite-observations or numerical model outputs, to three machine learning models. The root mean square error of the best performing model, a Random Forest (RF) model, was $7.1{\mu}atm$. Important parameters in predicting $fCO_2$ in the RF model were SST and SSS along with time information; CHL and MLD were much less important than the other parameters. The net $CO_2$ flux in the southwest East Sea, calculated from the $fCO_2$ predicted by the RF model, was $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$, close to the lower bound of the previous estimates in the range of $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$. The time series of $fCO_2$ predicted by the RF model showed a significant variation even in a short time interval of a week. For accurate evaluation of the $CO_2$ flux in the Ulleung Basin, it is necessary to conduct high resolution in situ observations in spring when $fCO_2$ changes rapidly.

Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model (신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성)

  • PARK, SOYEONA;LEE, TONGSUP;JO, YOUNG-HEON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Currently available surface seawater partial pressure carbon dioxide ($pCO_2$) data sets in the East Sea are not enough to quantify statistically the carbon dioxide flux through the air-sea interface. To complement the scarcity of the $pCO_2$ measurements, we construct a neural network (NN) model based on satellite data to map $pCO_2$ for the areas, which were not observed. The NN model is constructed for the Ulleung Basin, where $pCO_2$ data are best available, to map and estimate the variability of $pCO_2$ based on in situ $pCO_2$ for the years from 2003 to 2012, and the sea surface temperature (SST) and chlorophyll data from the MODIS (Moderate-resolution Imaging Spectroradiometer) sensor of the Aqua satellite along with geographic information. The NN model was trained to achieve higher than 95% of a correlation between in situ and predicted $pCO_2$ values. The RMSE (root mean square error) of the NN model output was $19.2{\mu}atm$ and much less than the variability of in situ $pCO_2$. The variability of $pCO_2$ with respect to SST and chlorophyll shows a strong negative correlation with SST than chlorophyll. As SST decreases the variability of $pCO_2$ increases. When SST is lower than $15^{\circ}C$, $pCO_2$ variability is clearly affected by both SST and chlorophyll. In contrast when SST is higher than $15^{\circ}C$, the variability of $pCO_2$ is less sensitive to changes in SST and chlorophyll. The mean rate of the annual $pCO_2$ increase estimated by the NN model output in the Ulleung Basin is $0.8{\mu}atm\;yr^{-1}$ from 2003 to 2014. As NN model can successfully map $pCO_2$ data for the whole study area with a higher resolution and less RMSE compared to the previous studies, the NN model can be a potentially useful tool for the understanding of the carbon cycle in the East Sea, where accessibility is limited by the international affairs.

Comparison of Growth Period and Local Climate for 'Hongro' Apple Orchards Located at Different Altitudes in Jangsu-Gun (장수군의 해발고도별 '홍로' 사과원의 미기상 및 생육기 비교)

  • Song, Ju-Hee;Seo, Byung Sun;Choi, Dong Geun;Choi, In Myung;Kang, In-Kyu;Guak, Sunghee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study was conducted to compare the local climate conditions and growth periods for the apple (Malus domestica 'Borkh') orchards at different altitudes (330, 500, and 670 m) in Jangsu-Gun, Korea. Observation data for the growth period show that the monthly mean air temperatures at the 'Hongro' apple orchard sites decrease with height at the rate of 1.0 to $3.0^{\circ}C$/100 m. The monthly minimum temperatures in April (blooming period for 'Hongro' apple) were 4.3, 2.9, and $0.4^{\circ}C$ at 330, 500, and 670 m, respectively. The monthly mean temperatures in September (i.e., the coloration and maturation period) were 20.6, 18.7, and $14.5^{\circ}C$, respectively. The annual precipitation range varied from 1,234 to 1,439 mm, which tended to increase with height. The heavy rainfall occurred in summer (June to August) and amounted to 827-933 mm. No significant differences in the duration of sunshine were observed amongst the orchards at three different altitudes. The earliest bud break was observed at the 330 m altitude (18 March 2009), which was 4 and 11 days earlier in comparison to those at 500 and 670 m, respectively. The time of full bloom at 330 m was 12 days ahead of that at 670 m. The optimal maturation of fruit (based on skin redness > 80%) was observed between 7 and 10 September at 330 m, 15 and 18 September at 500 m, and 21 and 23 September at 670 m.

Effect of Day/Night Temperatures during Seedling Culture on the Growth and Nodes of Early Flower Cluster Set of 'Seokwang' Tomato (Lycopersicum esculentum Mill.) (육묘시의 주야간 기온이 서광 토마토의 생육 및 초기 착화 절위에 미치는 영향)

  • 김오임;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • This study was carried out to examine the effect of day/nignt temperatures during seedling culture on the vegetative and reproductive growth of Lycopersicum esculentum ‘Seokwang’. The study was consisted of two culture stages, plug seedling production in the growth chamber and hydroponic culture of the plant in a glasshouse. Experiments were replicated over time. The germinated seedlings were raised for 33 days (experiment 1) and 35 days (experiment 2) in 4 growth chambers, each with day/night temperatures of either $25^{\circ}C$/$25^{\circ}C$, 16$^{\circ}C$/16$^{\circ}C$, 16$^{\circ}C$/$25^{\circ}C$ or $25^{\circ}C$/16$^{\circ}C$. Cool-white fluorescent lamps provided 140$\mu$mol.m$^{-2}$ .s$^{-1}$ light for 12h each day. In the second experiment, all chambers were supplied with 1000$\mu$mol.mol$^{-1}$ CO$_{2}$ during the photoperiod and had an air velocity of 0.3m.s$^{-1}$ and relative humidity of 80%. Plug seedlings raised were transplanted to rockwool slabs in a glasshouse and were grown hydroponically using the same nutrient solutions used for seedling culture for 37 days (experiment 1) and 35 days (experiment 2). Plant height was affected more by mean daily temperature than by interaction of day and night temperatures. Plant height was the highest in 16/16$^{\circ}C$ treatment. Leaf count was not affected by day and night temperatures, and the chlorophyll concentration was the highest in 16/$25^{\circ}C$ treatment. Fresh and dry weights of stem tended to be greater in treatments of constant day and night temperature. The number of node on which first and second flower clusters were set was significantly higher in 25/$25^{\circ}C$ treatment than in the other treatments. Days to flower of the first flower on the first flower cluster were the greatest in 25/$25^{\circ}C$ and the least in 16/$25^{\circ}C$ treatment. Vegetative and reproductive growth, such as height, fresh and dry weights, days to flower, and nodes of the 1st and 2nd flower cluster set were affected by day/night temperatures.

  • PDF

The Evaluation of Meteorological Inputs retrieved from MODIS for Estimation of Gross Primary Productivity in the US Corn Belt Region (MODIS 위성 영상 기반의 일차생산성 알고리즘 입력 기상 자료의 신뢰도 평가: 미국 Corn Belt 지역을 중심으로)

  • Lee, Ji-Hye;Kang, Sin-Kyu;Jang, Keun-Chang;Ko, Jong-Han;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.481-494
    • /
    • 2011
  • Investigation of the $CO_2$ exchange between biosphere and atmosphere at regional, continental, and global scales can be directed to combining remote sensing with carbon cycle process to estimate vegetation productivity. NASA Earth Observing System (EOS) currently produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1 km spatial resolution. While the MODIS GPP algorithm uses meteorological data provided by the NASA Data Assimilation Office (DAO), the sub-pixel heterogeneity or complex terrain are generally reflected due to coarse spatial resolutions of the DAO data (a resolution of $1{\circ}\;{\times}\;1.25{\circ}$). In this study, we estimated inputs retrieved from MODIS products of the AQUA and TERRA satellites with 5 km spatial resolution for the purpose of finer GPP and/or NPP determinations. The derivatives included temperature, VPD, and solar radiation. Seven AmeriFlux data located in the Corn Belt region were obtained to use for evaluation of the input data from MODIS. MODIS-derived air temperature values showed a good agreement with ground-based observations. The mean error (ME) and coefficient of correlation (R) ranged from $-0.9^{\circ}C$ to $+5.2^{\circ}C$ and from 0.83 to 0.98, respectively. VPD somewhat coarsely agreed with tower observations (ME = -183.8 Pa ~ +382.1 Pa; R = 0.51 ~ 0.92). While MODIS-derived shortwave radiation showed a good correlation with observations, it was slightly overestimated (ME = -0.4 MJ $day^{-1}$ ~ +7.9 MJ $day^{-1}$; R = 0.67 ~ 0.97). Our results indicate that the use of inputs derived MODIS atmosphere and land products can provide a useful tool for estimating crop GPP.

Fine Root Biomass in Pinus densiflora Stands using Soil Core Sampling and Minirhizotrons (토양 코어 및 미니라이조트론을 이용한 소나무 임분의 세근 바이오매스 연구)

  • Han, Seung Hyun;Yoon, Tae Kyung;Han, Saerom;Yun, Soon Jin;Lee, Sun Jeoung;Kim, Seoungjun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Fine root distribution was investigated in Pinus densiflora stands using soil core sampling and minirhizotrons, and conversion factors and regression equations were developed for converting minirhizotron data into fine root biomass. Fine root biomass was measured by soil core sampling from October, 2012 to September, 2013 once a month except for the winter, and surface area of fine roots was estimated by minirhizotrons from May to August, 2013 once a month. Fine root biomass and surface area were significantly higher in the upper soil layers than in the lower soil layers. Fine root biomass showed seasonal patterns; the mean fine root biomass ($kg{\cdot}ha^{-1}$) in summer (3,762.4) and spring (3,398.0) was significantly higher than that in autumn (2,551.6). Vertical and seasonal patterns of fine root biomass might be related to the soil bulk density, nutrient content and temperature with soil depth, and seasonal changes of soil and air temperature. Conversion factors (CF) between fine root surface area from minirhizotron data and fine root biomass from soil core sampling were developed for the three soil depths. Then a linear regression equation was developed between the predicted fine root biomass using CF and the measured fine root biomass (y = 79.7 + 0.93x, $R^2=0.81$). We expect to estimate the long-term dynamics of fine roots using CF and regression equation for P. densiflora forests in Korea.

Effects of Fertilization Time and Culture Medium of Pig Oocytes Matured In Vitro by liquid Boar Sperm Stored at $4^{\circ}C$ (체외성숙된 돼지난포란을 $4^{\circ}C$ 보존 액상정액으로 체외수정시 수정시간과 배양배지의 영향)

  • Park, C. S.;Y. J. Yi;Kim, M. Y.;Y. J. Chang;Lee, S. H.;D. I. Jin
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.3
    • /
    • pp.215-223
    • /
    • 2003
  • This study was to investigate the effects of fertilization time and culture medium of pig oocytes matured in-vitro by liquid boar sperm. The sperm rich fraction (30∼60 ml) was slowly cooled to room temperature (20∼23$^{\circ}C$) by 2 h after collection. Semen was transferred into 15 ml tubes, centrifuged at room temperature for 10 min 800 ${\times}$ g, and the supernatant solution was poured off. The concentrated sperm was resuspended with 5 ml of the LEN diluent to provide 1.0${\times}$10$^{9}$ sperm/ml at room temperature. The resuspended semen was cooled in a refrigerator to 4$^{\circ}C$. The medium used for oocyte maturation was TCM-199 supplemented with 26.19 mM sodium bicarbonate, 0.9 mM sodium pyruvate, 10 $\mu\textrm{g}$/ml insulin, 2 $\mu\textrm{g}$/ml vitamin B$_{12}$ , 25 mM HEPES, 10 $\mu\textrm{g}$/ml bovine apotransferrin, 150 $\mu$M cysteamine, 10 IU/ml PMSG, 10 IU/ml hCG, 10 ng/ml EGF, 0.4% BSA, 75 $\mu\textrm{g}$/ml sodium penicillin G, 50 $\mu\textrm{g}$/ml streptomycin sulfate and 10% pFF. After about 22 h of culture, oocytes were cultured without cysteamine and hormones for 22 h at 38.5$^{\circ}C$, 5% $CO_2$ in air. Oocytes were inseminated with liquid boar sperm stored at 4$^{\circ}C$ for 2 days after collection. Oocytes were coincubated for 1, 3, 6 and 9 h in 500 ${mu}ell$ mTBM fertilization media with 1.0${\times}$10$^{6}$ sperm/ml concentration, respectively. Thereafter, oocytes were transferred into 500 ${mu}ell$ NCSU-23, HEPES buffered NCSU-23, PZM-3 and PZM-4 culture media, respectively, for further culture of 6, 48 and 144 h. The rates of sperm penetration and male pronuclear formation were higher in the fertilization times for 6 and 9 h than in those for 1 and 3 h. The rates of cleaved oocytes were higher in the fertilization times for 6 and 9 h (85.0 and 84.6%) than in those for 1 and 3 h (61.1 and 76.8%). The percentage of blastocyst formation from the cleaved oocytes was highest in the fertilization time for 6 h (33.6%) than in that for 1, 3 and 9 h (11.4, 23.0 and 29.6%). Mean cell numbers per blastocyst were 32.9, 27.6, 26.3 and 24.4 in the fertilization times for 6, 9, 3 and 1 h, respectively. The rate of blastocyst from the cleaved oocytes and the number of cells per blastocyst were higher in HEPES buffered NCSU-23 culture medium than in NCSU-23, PZM-3 and PZM-4 culture media. In conclusion, we found out that liquid boar sperm stored at 4$^{\circ}C$ could be used for in-vitro fertilization of pig oocytes matured in-vitro. Also, we recommend the coincubation time of 6 h in 500 ${mu}ell$ TBM fertilization medium with 1${\times}$10$^{6}$ sperm/ml concentration and the HEPES buffered NCSU-23 culture medium for in-vitro fertilization of pig oocytes matured in-vitro.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

Comparision of Blood Gas Analyser, pH Meter and pH Strip Methods in the Measurement of Pleural Fluid pH (흉수의 pH 측정에서 혈액가스분석기계, pH meter, pH Strip 방법의 비교)

  • Jee, Hyun-Suk;Park, Yong-Bum;Choi, Jae-Chol;Ahn, Chang-Hyuk;Yoo, Ji-Hoon;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.773-780
    • /
    • 2000
  • Background : pH measurement is an important test in assessing the etiology of pleurisy and in identifying complicated parapneumonic effusion. Although the blood gas analyzer is the gold standard method' for pleural pH measurement, pH meter & pH strip methods are also used for this purpose interchangably. However, the correlation among the pH data measured by the three different methods needs to be evaluated. In this study, we measured the pH of pleural fluid with the three different methods respectively and evaluated the correlation among the measured data. Methods : From August 1999 to March 2000, we measured the pleural fluid pH in 34 clinical samples with three methods-blood gas analyzer, pH meter, and pH strip. In the blood gas analyzer and pH meter methods, the temperature of pleural fluid was maintained around $0^{\circ}C$ in air-tight condition before analysis and measurement was performed within 30 minutes after collection. As for the pH strip method, the pleural fluid pH was checked in the ward immediately after tapping and in the clinical laboratory of our hospital. This part is unclear. Results : The causes of pleural effusion were tuberculosis pleurisy in 16 cases, malignant pleural effusion 5 cases, parapneumonic effusion 9 cases, empyema 3 cases, and congestive heart failure 1 case. The pH of pleural fluid (mean$\pm$SD) was 7.34$\pm$0.12 with blood gas analyser, 7.52$\pm$0.25 with pH meter, 7.37$\pm$0.16 with pH strip of immediate measurement and 6.93$\pm$0.201 with pH strip of delayed measurement. The pH measured by delayed pH strip measurement was lower than those of other methods (p<0.05). The correlation of the results between the blood gas analyzer and pH meter(p=0.002, r=0.518) and the blood gas analyzer and pH strip of immediate measurement(p<0.001, r=0.607). Conclusion : In the determination of pH of pleural fluid, pH strip method could be a simple and reliable method under immediate measurement conditions after pleural fluid tapping.

  • PDF