Browse > Article
http://dx.doi.org/10.7780/kjrs.2011.27.4.481

The Evaluation of Meteorological Inputs retrieved from MODIS for Estimation of Gross Primary Productivity in the US Corn Belt Region  

Lee, Ji-Hye (Department of Environmental Science, College of National Science, Kangwon National University)
Kang, Sin-Kyu (Department of Environmental Science, College of National Science, Kangwon National University)
Jang, Keun-Chang (Department of Environmental Science, College of National Science, Kangwon National University)
Ko, Jong-Han (Division of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University)
Hong, Suk-Young (Soil and Fertilizer Management Division, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Korean Journal of Remote Sensing / v.27, no.4, 2011 , pp. 481-494 More about this Journal
Abstract
Investigation of the $CO_2$ exchange between biosphere and atmosphere at regional, continental, and global scales can be directed to combining remote sensing with carbon cycle process to estimate vegetation productivity. NASA Earth Observing System (EOS) currently produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1 km spatial resolution. While the MODIS GPP algorithm uses meteorological data provided by the NASA Data Assimilation Office (DAO), the sub-pixel heterogeneity or complex terrain are generally reflected due to coarse spatial resolutions of the DAO data (a resolution of $1{\circ}\;{\times}\;1.25{\circ}$). In this study, we estimated inputs retrieved from MODIS products of the AQUA and TERRA satellites with 5 km spatial resolution for the purpose of finer GPP and/or NPP determinations. The derivatives included temperature, VPD, and solar radiation. Seven AmeriFlux data located in the Corn Belt region were obtained to use for evaluation of the input data from MODIS. MODIS-derived air temperature values showed a good agreement with ground-based observations. The mean error (ME) and coefficient of correlation (R) ranged from $-0.9^{\circ}C$ to $+5.2^{\circ}C$ and from 0.83 to 0.98, respectively. VPD somewhat coarsely agreed with tower observations (ME = -183.8 Pa ~ +382.1 Pa; R = 0.51 ~ 0.92). While MODIS-derived shortwave radiation showed a good correlation with observations, it was slightly overestimated (ME = -0.4 MJ $day^{-1}$ ~ +7.9 MJ $day^{-1}$; R = 0.67 ~ 0.97). Our results indicate that the use of inputs derived MODIS atmosphere and land products can provide a useful tool for estimating crop GPP.
Keywords
MODIS; Crop Gross primary productivity; LUE;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Gitelson, A. A., A. Vina, S. B. Verma, D. C. Rundquist, T. J. Arkebauer, G. P. Keydan, B. Leavitt, V. Ciganda, G. G. Burba, and A. E. Suyker, 2006. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity, Journal of Geophysical Research, 111: D08S11.   DOI
2 Heinsch, F. A., M. Reeves, P. Votava, S. Kang, C. Milesi, M. Zhao, J. Glassy, W. M. Jolly, R. Loehman, C. F. Bowker, J. S. Kimball, R. R. Nemani, and S. W. Running, 2003. User's guide, GPP and NPP (MOD17A2/A3) products NASA MODIS Land Algorithm, Missoula, MT: The University of Montana.
3 Jang, K., S. Kang, J. Kim, C. Lee, T. Kim, J. Kim, R. Hirata, and N. Saigusa, 2010. Mapping evapotranspiration using MODIS and MM5 Four-Dimensional Data Assimilation, Remote Sensing of Environment, 114(3): 657-673.   DOI   ScienceOn
4 Monteith, J. L., 1977. Climate and the efficiency of crop production in Britain, Philosophical Transactions of the Royal Society of London, 281(980): 277-294.   DOI
5 강신규, 김영일, 김영진, 2005. MODIS 총 일차생산성 산출물의 오차요인 분석: 입력기상자료의 영향, 한국농림기상학회지, 7(2): 171-183.
6 정승택, 장근창, 강신규, 김준, H. Kondo, J. Asanuma, M. Gamo, N. Saigusa, S. Wang, and S. Han, 2009. 동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가, 한국농림기상학회지, 11(4): 174-184.   DOI
7 Bird, R. E. and R. L. Hulstrom, 1981. A simplified clear sky model for direct and diffuse insolationon horizontal surfaces, Solar Energy Research Inst., Golden, USA.
8 Bisht, G., V. Venturini, S. Islam, and L. Jiang, 2005. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days, Remote Sensing of Environment, 97(1): 52-67.   DOI   ScienceOn
9 Dingman, S. L., 1994. Physical hydrology 2nd Edition, Prentice-Hall Inc., New Jersey 07458.
10 Field, C. B., J. T. Randerson, and C. M. Malmstr?m, 1995. Global net primary production: Combining ecology and remote sensing, Remote Sensing of Environment, 51(1): 74-88.   DOI   ScienceOn
11 Turner, D. P., S. Urbanski, D. Bremer, S. C. Wofsy, T. Meyers, S. T. Gower, and M. Gregory, 2003. A cross-biome comparison of daily light-use efficiency for gross primary production, Global Change Biology, 9(3): 383-395.   DOI   ScienceOn
12 김이현, 홍석영, 이훈열, 이재은, 2011. L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링, 대한원격탐사학회지, 27(5): 191-201.   DOI
13 Prince, S. D. and S. N. Goward, 1995. Global primary production: a remote sensing approach, Journal of Biogeography, 22: 815-835.   DOI   ScienceOn
14 Ryu, Y., S. Kang, S. Moon, and J. Kim, 2008. Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days, Agriculture and forest meteorology, 148(10): 1538-1552.   DOI   ScienceOn
15 Running, S. W., P. E. Thornton, R. R. Nemani, and J. Glassy, 2000. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System, Methods in Ecosystem Science, Springer-Verlag, NY, 44-57.
16 Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS Infrared radiations, Journal of Applied Meteorology, 42: 1072-1091.   DOI   ScienceOn