• Title/Summary/Keyword: Mean 필터

Search Result 557, Processing Time 0.028 seconds

Improving Stability and Characteristic of Circuit and Structure with the Ceramic Process Variable of Dualband Antenna Switch Module (Dual band Antenna Switch Module의 LTCC 공정변수에 따른 안정성 및 특성 개선에 관한 연구)

  • Lee Joong-Keun;Yoo Joshua;Yoo Myung-Jae;Lee Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.105-109
    • /
    • 2005
  • A compact antenna switch module for GSM/DCS dual band applications based on multilayer low temperature co-fired ceramic (LTCC) substrate is presented. Its size is $4.5{\times}3.2{\times}0.8 mm^3$ and insertion loss is lower than 1.0 dB at Rx mode and 1.2 dB at Tx mode. To verify the stability of the developed module to the process window, each block that is diplexer, LPF's and bias circuit is measured by probing method in the variation with the thickness of ceramic layer and the correlation between each block is quantified by calculating the VSWR In the mean while, two types of bias circuits -lumped and distributed - are compared. The measurement of each block and the calculation of VSWR give good information on the behavior of full module. The reaction of diplexer to the thickness is similar to those of LPF's and bias circuit, which means good relative matching and low value of VSWR, so total insertion loss is maintained in quite wide range of the thickness of ceramic layer at both band. And lumped type bias circuit has smaller insertion itself and better correspondence with other circuit than distributed stripline structure. Evaluated ceramic module adopting lumped type bias circuit has low insertion loss and wider stability region of thickness over than 6um and this can be suitable for the mass production. Stability characterization by probing method can be applied widely to the development of ceramic modules with embedded passives in them.

  • PDF

Soccer Game Analysis I : Extraction of Soccer Players' ground traces using Image Mosaic (축구 경기 분석 I : 영상 모자익을 통한 축구 선수의 운동장 궤적 추출)

  • Kim, Tae-One;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.51-59
    • /
    • 1999
  • In this paper we propose the technique for tracking players and a ball and for obtaining players' ground traces using image mosaic in general soccer sequences. Here, general soccer sequences mean the case that there is no extreme zoom-in or zoom-out of TV camera. Obtaining player's ground traces requires that the following three main problems be solved. There main problems: (1) ground field extraction (2) player and ball tracking and team indentification (3) player positioning. The region of ground field is extracted on the basis of color information. Players are tracked by template matching and Kalman filtering. Occlusion reasoning between overlapped players in done by color histogram back-projection. To find the location of a player, a ground model is constructed and transformation between the input images and the field model is computed using four or more feature points. But, when feature points extracted are insufficient, image-based mosaic technique is applied. By this image-to-model transformation, the traces of players on the ground model can be determined. We tested our method on real TV soccer sequence and the experimental results are given.

  • PDF

Fast Image Pre-processing Algorithms Using SSE Instructions (SSE 명령어를 이용한 영상의 고속 전처리 알고리즘)

  • Park, Eun-Soo;Cui, Xuenan;Kim, Jun-Chul;Im, Yu-Cheong;Kim, Hak-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.65-77
    • /
    • 2009
  • This paper proposes fast image processing algorithms using SSE (Streaming SIMD Extensions) instructions. The CPU's supporting SSE instructions have 128bit XMM registers; data included in these registers are processed at the same time with the SIMD (Single Instruction Multiple Data) mode. This paper develops new SIMD image processing algorithms for Mean filter, Sobel horizontal edge detector, and Morphological erosion operation which are most widely used in automated optical inspection systems and compares their processing times. In order to objectively evaluate the processing time, the developed algorithms are compared with OpenCV 1.0 operated in SISD (Single Instruction Single Data) mode, Intel's IPP 5.2 and MIL 8.0 which are fast image processing libraries supporting SIMD mode. The experimental result shows that the proposed algorithms on average are 8 times faster than the SISD mode image processing library and 1.4 times faster than the SIMD fast image processing libraries. The proposed algorithms demonstrate their applicability to practical image processing systems at high speed without commercial image processing libraries or additional hardwares.

GAP Estimation on Arterial Road via Vehicle Labeling of Drone Image (드론 영상의 차량 레이블링을 통한 간선도로 차간간격(GAP) 산정)

  • Jin, Yu-Jin;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.90-100
    • /
    • 2017
  • The purpose of this study is to detect and label the vehicles using the drone images as a way to overcome the limitation of the existing point and section detection system and vehicle gap estimation on Arterial road. In order to select the appropriate time zone, position, and altitude for the acquisition of the drone image data, the final image data was acquired by shooting under various conditions. The vehicle was detected by applying mixed Gaussian, image binarization and morphology among various image analysis techniques, and the vehicle was labeled by applying Kalman filter. As a result of the labeling rate analysis, it was confirmed that the vehicle labeling rate is 65% by detecting 185 out of 285 vehicles. The gap was calculated by pixel unitization, and the results were verified through comparison and analysis with Daum maps. As a result, the gap error was less than 5m and the mean error was 1.67m with the preceding vehicle and 1.1m with the following vehicle. The gaps estimated in this study can be used as the density of the urban roads and the criteria for judging the service level.

Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map (가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.612-624
    • /
    • 2005
  • In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow Based on the Concept of Short-term Displaced Flow (연속류도로 단기 적체 교통량 개념 기반 돌발상황 자동감지 알고리즘 개발)

  • Lee, Kyu-Soon;Shin, Chi-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.13-23
    • /
    • 2016
  • Many traffic centers are highly hesitant in employing existing Automatic Incident Detection Algorithms due to high false alarm rate, low detection rate, and enormous effort taken in maintaining algorithm parameters, together with complex algorithm structure and filtering/smoothing process. Concerns grow over the situation particularly in Freeway Incident Management Area This study proposes a new algorithm and introduces a novel concept, the Displaced Flow Index (DiFI) which is similar to a product of relative speed and relative occupancy for every execution period. The algorithm structure is very simple, also easy to understand with minimum parameters, and could use raw data without any additional pre-processing. To evaluate the performance of the DiFI algorithm, validation test on the algorithm has been conducted using detector data taken from Naebu Expressway in Seoul and following transferability tests with Gyeongbu Expressway detector data. Performance test has utilized many indices such as DR, FAR, MTTD (Mean Time To Detect), CR (Classification Rate), CI (Composite Index) and PI (Performance Index). It was found that the DR is up to 100%, the MTTD is a little over 1.0 minutes, and the FAR is as low as 2.99%. This newly designed algorithm seems promising and outperformed SAO and most popular AIDAs such as APID and DELOS, and showed the best performance in every category.

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

Effect of Retrograde Autologous Priming in Adult Cardiac Surgery for Minimizing Hemodilution and Transfusion Requirements (성인개심술에서 혈액희석 및 수혈을 최소화하기 위한 역행성 자가 혈액 충전법의 효과)

  • Kim Kyung-Hwan
    • Journal of Chest Surgery
    • /
    • v.38 no.12 s.257
    • /
    • pp.821-827
    • /
    • 2005
  • Background: Hemodilution after priming of the cardiopulmonary bypass is known to increase the possibility of bleeding and homologous transfusion in adult cardiac surgery. We investigated the effects of retrograde autologous priming (RAP) to see whether it would decrease postoperative bleeding and homologous transfusion. Material and Method: We retrospectively reviewed 34 patients wpho underwent RAP and 46 patients who did not. Retrograde autologous priming consisted of arterial lire drainage, venous reservoir and oxygenator drainage and venous line drainage. We compared the amount of priming solution and RAP volume, perioperative hematocrit, postoperative bleeding and transfusion requirements in the two groups. Resuit: Mean withdrawal volume in RAP group was 613.5$\pm$160.6 mL and initial priming volume was 1381.9$\pm$37.2 mL. Hemoatocrits ($\%$) in RAP and control groups were 25.0$\pm$3.7 vs 20.9$\pm$3.6 (5 minutes after CPB), 25.9$\pm$3.7 vs 22.5$\pm$3.6 (30 minutes after CPB), 25.9$\pm$3.4 vs 23.8$\pm$2.8 (60 minutes after CPB), 31.9$\pm$3.9 vs 31.5$\pm$4.5 (postoperative 1 hour), 32.4$\pm$4.4 vs 32.1$\pm$4.5 (postoperative 6 hours), 33.4$\pm$5.0 vs 31.7$\pm$5.1 (postoperative 1 day)[repeated measures ANOVA, p < 0.05]. Chest tube drainages (mL) in the two groups were 357.2$\pm$177.1 vs 411.7$\pm$279.5 (postoperative 6 hours), 599.4$\pm$145.6 vs 678.8$\pm$256.4 (postoperative 24 hours)[t-test, p < 0.05]. Homologous transfusion was performed in 7 out of 34 patients in RAP group (20.6$\%$), and 16 out of 46 (34.8$\%$) in control group (p < 0.05). Conclusion: This study suggests that the effects of reducing the priming volume during cardiopulmonary bypass may result in lesser bleeding and homologous transfusion. Retrograde autologous priming would be used to reduce postoperative bleeding and chance of transfusion after adult cardiac surgery.