• Title/Summary/Keyword: Maxwell Equations

Search Result 174, Processing Time 0.022 seconds

Estimation of Sensitivity Enhancements on Localized Surface Plasmon Resonance Sensor Using Dielectric Multilayer (유전체 다중층을 이용한 국소 표면 플라즈몬 공명 센서의 감도 향상에 관한 연구)

  • Ahn, Heesang;Kang, Tae Young;Oh, Jin-Woo;Kim, Kyujung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • In this research, we designed an LSPR sensor based on a thin-film multilayer comprising $TiO_2$ and $SiO_2$. The thickness of the overall substrate layer of the suggested multilayer LSPR sensor is limited to 100 nm, and the number of repeating $TiO_2$ and $SiO_2$ thin films is 1-4 within a limited thickness. Additionally, a nanowire structure with a gold thin film of 40 nm, height of 40 nm, period of 600 nm, and line width of 300 nm was formed on the multilayer. To design the variable wavelength-type SPR, the angle was fixed at $75^{\circ}$ and the wavelength was changed. We then simulated the system with the finite-element method (FEM) using Maxwell's equations. It was confirmed that the resonance wavelength became shorter as the number of multilayers increased when the refractive index was fixed. We found that the wavelength changes were more sensitive. However, no changes were observed when the number of the multilayers was three or higher.

Biaxial Buckling Analysis of Magneto-Electro-Elastic(MEE) Nano Plates using the Nonlocal Elastic Theory (비국소 탄성이론을 이용한 자기-전기-탄성 나노 판의 2방향 좌굴 해석)

  • Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.405-413
    • /
    • 2017
  • In this paper, we study the biaxial buckling analysis of nonlocal MEE(magneto-electro-elastic) nano plates based on the first-order shear deformation theory. The in-plane electric and magnetic fields can be ignored for MEE(magneto-electro-elastic) nano plates. According to magneto-electric boundary condition and Maxwell equation, the variation of magnetic and electric potentials along the thickness direction of the MME plate is determined. In order to reformulate the elastic theory of MEE(magneto-electro-elastic) nano-plate, the nonlocal differential constitutive relations of Eringen is used. Using the variational principle, the governing equations of the nonlocal theory are discussed. The relations between nonlocal and local theories are investigated by computational results. Also, the effects of nonlocal parameters, in-plane load directions, and aspect ratio on structural responses are studied. Computational results show the effects of the electric and magnetic potentials. These computational results can be useful in the design and analysis of advanced structures constructed from MEE(magneto-electro-elastic) materials and may be the benchmark test for the future study.

Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire (전기도금 된 Cu/Ni80Fe20 코어/쉘 복합 와이어에서 자기임피던스 및 자기완화)

  • Yoon, Seok Soo;Cho, Seong Eon;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • The model for the magneto-impedance of composite wires composed of highly conductive nonmagnetic metal core and soft magnetic shell was derived based on the Maxwell's equations. The Cu($100{\mu}m$ diameter)/$Ni_{80}Fe_{20}$($15{\mu}m$ thickness) core/shell composite wire was fabricated by electrodeposition. The impedance spectra for the $Cu/Ni_{80}Fe_{20}$ core/shell composite wire were measured in the frequency range of 10 kHz~10 MHz under longitudinal dc magnetic field in 0 Oe~200 Oe. The spectra of complex permeability in circumferential direction were extracted from the impedance spectra by using the derived model. The extracted spectra of complex permeability showed relaxation-type dispersion which is well curve-fitted with Debye equation with single relaxation frequency. By analyzing the magnetic field dependence of the complex permeability spectra, it has been verified that the composite wire has magnetic anisotropy in longitudinal direction and the origin of the single relaxation process is the magnetization rotation in circumferential direction.

2.5 Dimensional EM Modeling considering Horizontal Magnetic Dipole Source (수평 자기쌍극자 송신원을 이용한 2.5차원 전자탐사 모델링)

  • Kwon Hyoung-Seok;Song Yoonho;Son Jeong-Sul;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • In this study, the new modeling scheme has been developed for recently designed and tested electromagnetic survey, which adapts horizontal magnetic dipole with $1\;kHz\~1\;MHz$ frequency range as a source. The 2.5-D secondary field formulation in wavenumber domain was constructed using finite element method and verified through comparing results with layered-earth solutions calculated by integral equations. 2-D conductive- and resistive-block models were constructed for calculating electric field, magnetic field and impedance - the ratio of electric and magnetic fields which are orthogonal each other. This study showed that electric field and impedance are superior in identifying 2-D isolated-body model to magnetic field. In particular, impedance gives more stable results than electric field with similar spatial resolving power, because electric field is divided by magnetic field in impedance. Thus the impedance analysis which uses electric and magnetic fields together would give better result in imaging the shallow anomalies than conventional EM method.