• Title/Summary/Keyword: Maximum wave height

Search Result 185, Processing Time 0.034 seconds

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (II) - Characteristics of extreme waves generated by Typhoon MAEMI in the south coast of Korea - (제3세대 파랑추산모형을 이용한 태풍 ‘매미’의 극한파랑 재현 (II) - 태풍 ‘매미’가 야기한 우리나라 남해안 일대의 극한파랑 특성 -)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.745-751
    • /
    • 2004
  • Following a preceding study of Shin et al.(2004), wave fields for a month of September of 2003 are simulated based on the modified WAM cycle 4 model that enables the precise wave hindcasting with fine spatial meshes, and characteristics of extreme waves at the south coast of Korea are analyzed The accuracy of applied wave model is verified by comparing computed wave parameters and corresponding ones measured at Ieodo ocean research station. The wave hindcasting of typhoon 'Maemi' with an hour time interval reveals the extreme wave characteristics at 4 primary locations of south coast of Korea as follows: 1) At the front sea of Chaguido in the south of Jeju-do, the maximum significant wave height, mean wave period and mean wave direction appear to be 7.41m, 13.65s and $6.4^{\circ}$ respectively at 16:00 KST of Sep. 12, 2003. 2) At the entrance of Masan Bay, 12.50m, 13.65s and $1.2^{\circ}$ at 21:00 KST of Sep. 12. 3) At the front sea of Suyoung Bay, 13.85m, 13.81s and $0.2^{\circ}$ at 22;00 KST of Sep. 12. 4) At the front sea of Ulsan port, l1.00m, 13.25s and $2.8^{\circ}$ at 23:00 KST of Sep. 12.

A Fundamental Study for the Construction of Artificial Beaches (인공해수욕장(人工海水浴場) 건설(建設)을 위한 기초연구(基礎硏究))

  • Ryu, Cheong Ro;Chang, Sun Duck;Kim, Soong Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 1988
  • Some promising design criteria for the construction of artificial beaches are presented. Based on the result of visitor's enquete and field observations, the degree of satisfaction for some parameters such as wave height, water and air temperature and quality of sediments are obtained. Correlations between these parameters and the degree of satisfaction are also derived and discussed. From the study, the desirable design conditions for artificial beaches with the degree of satisfaction over 70% are proposed as; the minimum comfortable utilization area per capita is found to be approximately $10m^2$, maximum mean wave height 0.7m, the lowest water temperature $22^{\circ}C$, average diameter of sands 0.5mm approximately with identical grain size and roundness, and the foreshore slope less than 1 : 20.

  • PDF

Application of the Artificial Coral Reef as a Coastal Erosion Prevention Method with Numerical-Physical Combined Analysis (Case Study: Cheonjin-Bongpo Beach, Kangwon Province, South Korea)

  • Hong, Sunghoon;Jeong, Yeon Myeong;Kim, Taeyoon;Huynh, Van Men;Kim, Inho;Nam, Jungmin;Hur, Dong Soo;Lee, Jooyong;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • Artificial Coral Reefs (ACRs) have been introduced to help solve coastal erosion problems, but their feasibility has not been assessed with field data. This study conducted a feasibility analysis of ACRs on their erosion mitigation effects by performing a case study of Cheonjin-Bongpo beach, South Korea. A numerical-physical combined analysis was carried out using a SWAN model simulation and physical model test with a scale of 1/25 based on field observations of Cheonjin-Bongpo beach. Both Dean's parameter and the surf-scaling parameter were applied to comparative analysis between the absence and presence conditions of the ACR. The results for this combined method indicate that ACR attenuates the wave height significantly (59~71%). Furthermore, ACR helps decrease the mass flux (~50%), undertow (~80%), and maximum wave set up (~61%). The decreases in Dean's parameter (~66%) and the surf-scaling parameter suggest that the wave properties changed from the dissipative type to the reflective type even under high wave conditions. Consequently, an ACR can enhance shoreline stability.

Dispersion Characteristics of Wave Forces on Interlocking Caisson Breakwaters by Cross Cables (크로스 케이블로 결속된 인터로킹 케이슨 방파제의 파력분산특성)

  • Seo, Ji Hye;Yi, Jin Hak;Park, Woo Sun;Won, Deck Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.315-323
    • /
    • 2015
  • Damage level of coastal structures has been scaled up according to increase of wave height and duration of the storm due to the abnormal global climate change. So, the design criteria for new breakwaters is being intensified and structural strengthening is also conducted for the existing breakwaters. Recently, interlocking concept has been much attention to enhance the structural stability of the conventional caisson structure designed individually to resist waves. The interlocking caisson breakwater may be survival even if unusual high wave occurs because the maximum wave force may be reduced by phase lags among the wave forces acting on each caisson. In this study, the dispersion characteristics of wave forces using interlocking system that connect the upper part of caisson with cable in the normal direction of breakwater was investigated. A simplified linear model was developed for computational efficiency, in which the foundation and connection cables were modelled as linear springs, and caisson structures were assumed to be rigid. From numerical experiments, it can be found that the higher wave forces are transmitted through the cable as the angle of incident wave is larger, and the larger the stiffness of the interlocking cable makes larger wave dispersion effect.

A Study on the Numerical Simulation of the Seismic Sea Waves in the East Sea based on the Boussinesq Equation (Boussinesq 방정식을 이용한 동해지진해일 수치실험 연구)

  • Kim, Sung-Dae;Jung, Kyung-Tae;Park, Soo-Young
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.9-31
    • /
    • 2007
  • Most seismic sea waves in the East Sea originate from earthquakes occurring near the Japanese west coast. While the waves propagate in the East Sea, they are deformed by refraction, diffraction and scattering. Though the Boussinesq equation is most applicable for such wave phenomena, it was not used in numerical modelling of seismic sea waves in the East Sea. To examine characteristics of seismic sea waves in the East Sea, numerical models based on the Boussinesq equation are established and used to simulate recent tsunamis. By considering Ursell parameter and Kajiura parameter, it is proved that Boussinesq equation is a proper equation for seismic sea waves in the East Sea. Two models based on the Boussinesq equation and linear wave equation are executed with the same initial conditions and grid size ($1min{\times}1min$), and the results are compared in various respects. The Boussinesq equation model produced better results than the linear model in respect to wave propagation and concentration of wave energy. It is also certified that the Boussinesq equation model can be used for operational purpose if it is optimized. Another Boussinesq equation model whose grid size is $40sec{\times}30sec$ is set up to simulate the 1983 and 1993 tsunamis. As the result of simulation, new propagation charts of 2 seismic sea waves focused on the Korean east coast are proposed. Even though the 1983 and 1993 tsunamis started at different areas, the propagation paths near the Korean east coast are similar and they can be distinguished into 4 paths. Among these, total energy and propagating time of the waves passing over North Korea Plateau(NKP) and South Korea Plateau(SKP) determine wave height at the Korean east coast. In case of the 1993 tsunami, the wave passing over NKP has more energy than the wave over SKP. In case of the 1983 tsunami, the huge energy of the wave passing over SKP brought about great maximum wave heights at Mukho and Imwon. The Boussinesq equation model established in this study is more useful for simulation of seismic sea waves near the Korean east coast than it is the Japanese coast. To improve understanding of seismic sea waves in shallow water, a coastal area model based on the Boussinesq equation is also required.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

The effect of typhoon translation speed and landfall angle on the maximum surge height along the coastline

  • Qian, Xiaojuan;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.153-153
    • /
    • 2021
  • Storm Storm event is one of major issues in South Korea due to devastating damage at its landfall. A series of statistical study on the historical typhoon records consistently insist that the typhoon translation speed (TS) is on slowdown trend annually, and thus provides an urgent topic in assessing the extreme storm surge under future climate change. Even though TS has been regarded as a principal contributor in storm surge dynamics, only a few studies have considered its impact on the storm surge. The landfall angle (LA), another key physical factor of storm surge also needs to be further investigated along with TS. This study aims to elucidate the interaction mechanism among TS, LA, coastal geometry, and storm surge synthetically by performing a series of simulations on the idealized geometries using Delft3D FM. In the simulation, various typhoons are set up according to different combinations of TS and LA, while their trajectories are assumed to be straight with the constant wind speed and the central pressure. Then, typhoons are subjected to make landfall over a set of idealized geometries that have different depth profiles and layouts (i.e., open coasts or bays). The simulation results show that: (i) For the open coasts, the maximum surge height (MSH) increases with increasing TS. (ii) For the constant bed level, a typhoon normal to the coastline resulted in peak MSH due to the lowest effect of the coastal wave. (iii) For the continental shelf with different widths, the slow-moving typhoon will generate the peak MSH around a small LA as the shelf width becomes narrow. (iv) For the bay, MSH enlarges with the ratio of L/E (the length of main-bay axis /gate size) dropping, while the greatest MSH is at L/E=1. These findings suggest that a fast-moving typhoon perpendicular to the coastline over a broad continental shelf will likely generate the extreme storm surge hazard in the future, as well as the slow-moving typhoon will make an acute landfall over a narrow continental shelf.

  • PDF

Application of Practical Dispersion-Correction Scheme for Simulation of Tsunami Propagation (지진해일 전파 수치해석을 위한 실용적인 분산보정기법 적용)

  • Choi, Moon-Kyu;Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.145-152
    • /
    • 2008
  • The initial wave lengths of tsunamis can be several tens to hundreds kilometers. Thus, the importance of the frequency dispersive effects in proportion to variation of the wave length, and should be properly considered in numerical simulation of tsunami propagation for a better accuracy. Recently, a practical dispersion-correction scheme has been developed by adding dispersion-correction terms(Cho et al., 2007). The new model employing the numerical technique has been verified by comparing numerical results with available analytic solutions, however, the new model has not yet been applied on a real topography. In this study, the new model is applied on a real topography and its applicability is examined. To study the applicability of the new model, two historical tsunami events are simulated for Sokcho, Mukho and Pohang harbors, with the tide gage records. Numerical results, the arrival time and the maximum water level at the tidal stations, are compared with observed data at each harbor.

Characteristics of Solitary Waves Acting on Slopes (경사면에 작용하는 고립파의 특성)

  • Jeon, Chan-Hoo;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.779-786
    • /
    • 2002
  • A boundary element method with a Lagrangian approach and B-spline technique is employed to investigate characteristics of solitary waves attacking on beach slopes. By comparing numerical solutions with available laboratory measurements, it is shown that the maximum run-up heights of the present model are more agreeable than those of the existing numerical model. Variations of run-up heights and velocity vectors for different slopes are also described. Characteristics of hydrodynamic pressure acting beach slopes are investigated in detail.

Solitary Wave-like Ship Induced Waves and Its Associated Currents in a Water Channel of Narrow Width (협수로에서 생성되는 고립파 형태의 항주파와 항주파류)

  • Cho, Yong Jun;Choi, Han Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.202-216
    • /
    • 2015
  • In the narrow water channel, which has been frequently deployed in the artificial canal in the South Korea due to the lack of available land, solitary wave type ship induced waves can occur. In order to test this hypothetical view, we carried out the numerical simulation. Numerical model consists of Navier-Stokes Equations and VOF, and the verification is implemented using the data by PIANC (1987) and the analytical model derived in this study. It was shown that numerically simulated front wave height are much larger than the one by PIANC (1987), and the fluctuation of free surface near the channel bank persists much longer (around 20s). For the case of stern waves, numerically simulated wave height are somewhat smaller than the data by PIANC (1987). These results seriously deviates from the general characteristics of ship induced waves observed in the wide water channels, and leads us to conclude that ship induced waves is severely affected by the width of water channel. It was also shown that the currents from the channel banks toward a ship, and currents from the ship toward the channel banks are alternatively occurring due to reflection at the channel banks. The velocity of currents reaches its maximum at 0.90 m/s, and these values are sustained through the entire depth. which implies that severe scourings at the channel bottom can be underway.