• 제목/요약/키워드: Maximum vertical displacement

검색결과 169건 처리시간 0.033초

심벌캡 변화에 따른 심벌타입 압전 트랜스듀서의 발전특성 (Generating Characteristics of Cymbal Type Piezoelectric Transducer according to Change of Cymbal Cap)

  • 박충효;김종욱;정현호;정성수;김명호;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.318-318
    • /
    • 2010
  • In this paper, we studied generating characteristic of cymbal type piezoelectric transducer according to change of cymbal cap. The transducer is composed of circular piezoelectric ceramic and two elastic bodies which are shaped as cymbal. Two elastic bodies are attached to upper and bottom of the ceramic. Principle of the transducer is to generate expanded displacement because vertical stress is transformed into horizontal stress by slope angle of elastic bodies. The transducer also has advantage of high durability by the angle of elastic bodies. In this study, each parameter was chosen, and then generating characteristics were analyzed by FEM program. The parameters were slope angle of cymbal cap (theta), cap height (h) and cap inner diameter(d). The model that had generating characteristic Of high voltage was chosen by results of the analysis. Besides, maximum vertical displacements according to change of vertical stress were analyzed by structural analysis in order to find out relation between the maximum vertical stress which can prevent from ceramic damage and conditions of each cap.

  • PDF

상부 돔구조와 하부구조간의 고유진동수비에 따른 동적응답특성 (Dynamic Response Property according to Natural Frequency Ratio between Dome Structure and Substructure)

  • 이영락;김광일;강주원
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.113-120
    • /
    • 2015
  • This study investigate the dynamic response changes of rib dome structure according to property changes of Substructure. Eigenvalue analysis is conducted in first natural frequency of rib dome versus substructure and searched in the dominant mode of horizontal and vertical direction. Resonance frequency by each first natural frequency of the rib dome structure, substructure and total structure is applied for a seismic wave. That is analyzed about maximum displacement response ratio and maximum acceleration response ratio.

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.

복합지반상 교대변위 및 지반 측방유동에 관한 원심모델링 (Centrifuge Modeling on Lateral Flow of Soft Soils and Displacement of Bridge Abutment on the Composite Ground)

  • 허열;박성훈;윤석현;권선욱
    • 한국지반환경공학회 논문집
    • /
    • 제8권5호
    • /
    • pp.39-46
    • /
    • 2007
  • 본 연구에서는 모래다짐말뚝(SCP)로 개량된 복합 지반상의 고성토 지반 및 교대의 측방유동과 안정성을 파악하기 위하여 원심모형실험을 수행하였다. 원심모형실험은 교대배면구간을 EPS로 성토한 경우(Case 1)와 교대 배면구간을 토사로 성토한 경우(Case 2)에 대하여 수행하였으며, 모형실험시 성토체 상부와 교대구간에 Potentiometer를 설치하여 단계 성토별 성토체 수직변위 및 단계별 개량지반내 변형 양상과 교대상부에서 발생되는 수직 및 수평 변위를 측정하였다. 실험결과, 교대배면 성토부에서 수직변위는 최대 2.10m 정도(현장조건)로 성토고 대비 약 12%로 나타났다. 교대배면구간을 토사로 성토한 경우(Case 2) 교대 상부에서 측정된 수직 및 수평변위는 각각 10cm와 1.1m 정도로 허용기준을 크게 초과하였다. 반면, EPS로 뒷채움을 하는 경우(Case 1) 교대의 수직변위는 거의 발생하지 않았으며, 수평변위는 1.4cm 정도로 나타났다. 따라서, 연약지반상 도로 시공시 성토체의 안정성 확보를 위한 SCP공법 및 교대의 측방유동을 방지할 목적으로 채택된 SCP 개량 + EPS 성토공법의 효과는 매우 우수한 것으로 판단된다.

  • PDF

철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화 (Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls)

  • 문주현;양근혁
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.159-169
    • /
    • 2014
  • 이 연구에서는 철근콘크리트 전단벽의 횡하중 거동과 연성을 합리적으로 평가하기 위해서 모멘트-곡률관계를 정립하고 이로부터 단순화된 횡하중-횡변위관계를 제시하였다. 최초 휨 균열, 인장철근 항복, 최대내력, 최대내력의 80% 및 인장철근파단시점에서 모멘트와 곡률은 힘의 평형조건과 변형적합조건으로부터 정립되었다. 최대내력 이후의 곡률평가를 위한 압축측연단 콘크리트 변형률은 Razvi and Saatcioglu의 구속된 콘크리트의 응력-변형률 관계를 이용하여 최대응력의 감소계수와 횡보강근 체적지수의 함수로 제시하였다. 모멘트 평가모델은 변수연구를 통하여 인장철근지수, 수직철근지수 및 축력지수의 함수로 일반화하였다. 횡변위는 전단벽의 높이에 따라 분포된 이상화된 곡률로부터 모멘트 면적법을 이용하여 환산하였다. 제시된 횡하중-횡변위관계는 기존 실험 결과와 잘 일치하였으며, 특히 최대내력 이후의 거동을 잘 평가하였다.

연약지반상 고성토 교대구간의 지반거동 특성 (Characteristics of Ground Movement in High Filling Abutment on Soft Ground)

  • 허열;송석철;안광국;오승탁;서상구
    • 한국지반환경공학회 논문집
    • /
    • 제9권7호
    • /
    • pp.13-23
    • /
    • 2008
  • 본 연구에서는 모래다짐말뚝으로 개량된 점성토 지반에 고성토시 발생될 수 있는 측방유동과 교대의 안정성을 파악하기 위하여 원심모형실험과 수치해석을 수행하였다. 원심모형실험과 수치해석은 교대 배면구간을 EPS로 성토한 경우(Case 1)와 토사로 성토한 경우(Case 2)에 대하여 수행하였으며, 모형실험시 교대와 성토체에 potentiometer를 설치하여 교대상부의 수직변위와 수평변위 및 성토체의 수직변위를 측정하였다. 원심모형실험결과 Case 1에서 교대의 수평변위는 1.4cm 정도로 해석결과와 거의 일치하며, 허용기준을 만족하는 것으로 나타났다. 반면, Case 2에서 교대의 수평변위는 12cm 정도로 해석결과에 비해 18% 정도 크게 평가되었으며, 허용기준을 초과하는 것으로 나타났다. 해석결과 Case 1에서 말뚝의 최대수평변위는 1.26cm로 허용 수평변위 기준(1.5cm)을 만족하는 것으로 나타난 반면, Case 2에서 말뚝의 최대 수평변위는 1.005m로 허용기준을 크게 초과하는 것으로 나타났다.

  • PDF

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • 제23권5호
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.

PC 벽체 수직접합부의 개발 및 전단성능 평가 (Development and Shear Performance Evaluation of Vertical Joints between Precast Concrete Walls)

  • 문교영;김승직;이기학;김용남
    • 한국공간구조학회논문집
    • /
    • 제22권4호
    • /
    • pp.81-88
    • /
    • 2022
  • The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.

철도노반의 탄성변위 예측 및 측정을 통한 회복탄성계수 모델 평가 (An Assessment of a Resilient Modulus Model by Comparing Predicted and Measured Elastic Deformation of Railway Trackbeds)

  • 박철수;김은정;오상훈;김학성;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1404-1414
    • /
    • 2008
  • In the mechanistic-empirical trackbed design of railways, the resilient modulus is the key input parameter. This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

다수의 불규칙 공동을 갖는 광주의 안정성에 관한 수치해석 (The Numerical Analysis of Pillar Stability with Multiple, Irregular Openings)

  • 민형기;임한욱
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.139-155
    • /
    • 2004
  • A room and pillar mining method has been adopting at the Jeungsun limestone mine. To check stability of pillar with multiple and irregular openings, the size, shape and spacing of rib pillar were first designed using some empirical suggestions. The Finite Difference Method(FDM)was used to analyze the pillar stability. Twelve different cases with the variation of K(horizontal/vertical stress)values, different height and different spacing of pillar were used in this study. Finally Mohr-Coulomb criterion was adopted to calculate the safety factors. Horizontal and vertical displacement, maximum and minimum principal stresses, range of plastic zone and safety factors were calculated at each case. As a result of analysis, the size of one block is 160m long, 70m wide, 40m high with 20m wide rib pillar and 20m square column pillar. The overall recovery at this case can be estimated about 40%.

  • PDF