• 제목/요약/키워드: Maximum temperature rises

검색결과 49건 처리시간 0.023초

퍼지 알고리즘을 이용한 유중 변압기의 안전진단 및 평가에 관한 연구 (A Study on the Safty Diagnosis and Evaluation of Oil-immersed Transformer using fuzzy Algorithm)

  • 김영일
    • 전기학회논문지P
    • /
    • 제55권4호
    • /
    • pp.190-195
    • /
    • 2006
  • In this paper, safety algorithm of transformer is introduced for the sake of MV/LV distribution customers by using fuzzy theory. The current-carrying capacity of transformer is usually determined by the maximum temperature at which the transformer is permitted to operate. Overload of transformer has an effect on transformer utilization rate and maximum temperature rises as well as maximum ambient temperature of insulating materials. Therefore, we proposed the safety algorithm considering the overload of transformer and ambient temperature in this paper. We introduced the correlational equations between each parameters using experimental data of IEEE std C57.91-1995, and deduced the result using fuzzy reasoning. We guessed the safety algorithm making a diagnosis for the safety status of oil-immersed transformer.

경량 폴리머 모르타르의 발열온도특성과 가사시간의 관계 (Relationships between Exotherm Temperature and Working Life of Lightweight Polyester Mortars)

  • 최동순;이윤수;;연규석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.315-318
    • /
    • 1999
  • This paper deals with the relationships between the exotherm temperature and working life of lightweight polyester mortar. Polyester mortars using types of lightweight aggregate compositions are prepared, and tested for exotherm temperature during hardening and working life. It is concluded from the test results that the behavior of exotherm temperature of lightweight polyester mortars is considerably affected by the lightweight aggregate composition. The lightweight polyester mortars using a lightweight aggregate compositeion ES gradually develop an exotherm temperature from 2$0^{\circ}C$, and give a working life. Then the exotherm temperature rises sharply up to a maximum exotherm temperature. The working life of the lightweight polyester mortars shortens with increasing catalyst and accelerator contents. The maximum exotherm temperature of the lightweight polyester mortars rises with increasing catalyst and accelerator contents.

  • PDF

주거용 태양열 하이브리드 이산화탄소 열펌프 시스템의 성능특성에 관한 해석적 연구 (Simulation Study on the Performance Characteristics in the Solar Hybrid R744 Heat Pump for Residential Applications)

  • 김원석;조홍현
    • 설비공학논문집
    • /
    • 제23권10호
    • /
    • pp.678-686
    • /
    • 2011
  • Simulation study on the operating characteristics in the solar hybrid R744 heat pump system for residential applications was carried out with heat pump operating temperature, outdoor temperature and solar radiation. As a result, collector operating time is decreased by 1.5 hours due to the increase of water temperature in the heat storage tank when the heat pump operating temperature rises. Heat pump operating time is reduced by 19.4% owing to the high temperature of a heat storage tank. Besides, indoor heating time is decreased from 10.3 to 5.5 hours as the indoor temperature increases from $3^{\circ}C$ to $11^{\circ}C$. In addition to, when the solar radiation rises from 10 to 20 MJ/$m^2$, the maximum outlet temperature of a solar collector is increased from $65^{\circ}C$ to $71^{\circ}C$.

가스차단기 모선부의 온도상승 예측 프로그램 개발 (Development of the Temperature Prediction Program for the Bus Bar of a Gas-insulated Switchgear)

  • 함진기;김영기;이희원;김진수;송석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.169-174
    • /
    • 2003
  • The thermal design of the bus bar of a Gas-Insulated Switchgear(GIS) becomes important since the current-carrying capacity of the GIS is limited by maximum operating temperature. In order to predict temperature rise of the bus bar, a program has been developed. Various heat sources possibly generated in the bus bar are calculated in the program. To estimate temperature rises at the bus bar caused by the heat balance between the heat generation and heat transfer, the finite volume method as well as the $4^{th}$ order Runge-Kutta method has been employed. In the experiments, temperature rises at conductor, contact part and external tank are measured for full-scale gas-insulated bus bars. The comparisons of the predicted values of the heat balance calculation to those of the experiments are made. From the comparisons, it is concluded that the developed program can predict the temperature rise of the bus bar quite well.

  • PDF

극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구 (A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature)

  • 이준현
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.

Analysis of Surface Water Temperature Fluctuation and Empirical Orthogonal Function in Cheonsu Bay, Korea

  • Hyo-Sang Choo;Jin-Young Lee;Kyeung-Ho Han;Dong-Sun Kim
    • 해양환경안전학회지
    • /
    • 제29권3호
    • /
    • pp.255-269
    • /
    • 2023
  • Surface water temperature of a bay (from the south to the north) increases in spring and summer, but decreases in autumn and winter. Due to shallow water depth, freshwater outflow, and weak current, the water temperature in the central to northern part of the bay is greatly affected by the land coast and air temperature, with large fluctuations. Water temperature variations are large in the north-east coast of the bay, but small in the south-west coast. The difference between water temperature and air temperature is greater in winter and in the south-central part of the bay than that in the north to the eastern coast of the bay where sea dykes are located. As the bay goes from south to north, the range of water temperature fluctuation and the phase show increases. When fresh water is released from the sea dike, the surrounding water temperature decreases and then rises, or rises and then falls. The first mode of empirical orthogonal function (EOF) represents seasonal variation of water temperature. The second mode represents the variability of water temperature gradient in east-west and north-south directions of the bay. In the first mode, the maximum and the minimum are shown in autumn and summer, respectively, consistent with seasonal distribution of surface water temperature variance. In the second mode, phases of the coast of Seosan~Boryeong and the east coast of Anmyeon Island are opposite to each other, bordering the center of the deep bay. Periodic fluctuation of the first mode time coefficient dominates in the one-day and half-day cycle. Its daily fluctuation pattern is similar to air temperature variation. Sea conditions and topographical characteristics excluding air temperature are factors contributing to the variation of the second mode time coefficient.

제련설비용 대전류 동 Bus Bar의 온도해석 (Analysis of High Current Copper Bus Bar Temperature in Smelting Plants)

  • 곽병길;김창환;최병주;김규호;이상봉
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.26-32
    • /
    • 2014
  • In electrolysis smelting plants that using high DC current, the bus bar is most important facility for delivering the high current. The copper made bus bar is widely used for various advantages as good electrical and thermal conductivity, resonable malleability, ductility, and not rust easily. However, when high current in copper bus bar, temperature rises and maximum allowable current capacity is restricted by temperature of bus bar. In this paper, we investigated temperature variation of copper bus bar by putting cooling water channel imposed to bus bar construction. For the validity, various simulations were carried out.

Dielectric relaxation properties in the lead scandium niobate

  • Yeon Jung Kim
    • 한국표면공학회지
    • /
    • 제56권4호
    • /
    • pp.227-232
    • /
    • 2023
  • In this study, complex admittance as a function of temperature and frequency was measured to analyze the important relaxation properties of lead scandium niobate, which is physically important, although it is not an environmentally friendly electrical and electronic material, including lead. Lead scandium niobate was synthesized by heat treating the solid oxide, and the conductance, susceptance and capacitance were measured as a function of temperature and frequency from the temperature dependence of the RLC circuit. The relaxation characteristics of lead scandium niobate were found to be affected by contributions such as grain size, grain boundary characteristics, space charge, and dipole arrangement. As the temperature rises, the maximum admittance and susceptance increase in one direction, but the resonance frequency decreases below the transition temperature but increases after the phase transition.

Pseudomonas sp.의 연속배양에 있어서의 세포의 수율 및 화학적 조성에 미치는 영향 (Effects of temperature on the biomass yield and the chemical composition of pseudomonas cells in continuous culture)

  • 김창진;이영록
    • 미생물학회지
    • /
    • 제21권3호
    • /
    • pp.163-169
    • /
    • 1983
  • Effects of temperature on the gorwth characteristics and the chemical composition of pseudomonas cells grown under glucose-or methanol-utilizing continuous culture were studied. In a glucose-utilizing continuous culture, optimum dilution rate, agitation, pH, and temperature, for the higher biomass yield were $0.45hr^-$, 7000rpm, pH 7.5, and $30^{\circ}C$, respectively. But in a methanol-utilizing continuous culture, they were $0.125hr^-$, 600rpm, pH 8, and $30^{\circ}C$, respectively. In methanol-utilizing continuous culture, the maximum production rate of the cells was 1.48g, dry wt./1/hr at a dilution rate of $0.45hr^-$, and the cell yield was 0.46g. dry wt./g. glucose. In the methanol-utilizaing continuous culture, the maximum production rate of the cells was 0.33 7g. dry wt./1/hr. at a dilution rate of $0.125hr^-$ and the cell yield was 0.44g dry cell/g. methanol. The contents of protein of the cells increase with the increase ingrowing temperature (from 15 to $30^{\circ}C$), more or less, while the contents of RNA nad carbohydrate of the cells decreased. However, DNA contents of cells growth under the various temperature ranges didn't change. As the temeprature of cultivation rises at a constant dilution rate, the efficiency of RNA in protein synthesis was increased, showing the decreases in the ratio of RNA to protein.

  • PDF

록업 클러치 주변의 온도 측정 및 수치 해석 (Measurement and Numerical Analysis far Temperature near the Lockup Clutch)

  • 고권현;유홍선;조성욱;이규봉
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.129-135
    • /
    • 2002
  • The present article deals with the measurement and the numerical calculations far the temperature distribution near the facing of the lockup clutch. The rotating telemetry system is Introduced for the estimation inside high-speed torque converter For the numerical calculation, the effect of the convective heat transfer is considered as well as the conduction to the solid. The estimation shows that the oil temperature near facing rapidly rises as the lockup clutch is engaged. The numerical results shows good agreements with the experimental values for the maximum temperature near the facing of the lockup clutch.