DOI QR코드

DOI QR Code

Dielectric relaxation properties in the lead scandium niobate

  • Received : 2023.08.11
  • Accepted : 2023.08.23
  • Published : 2023.08.31

Abstract

In this study, complex admittance as a function of temperature and frequency was measured to analyze the important relaxation properties of lead scandium niobate, which is physically important, although it is not an environmentally friendly electrical and electronic material, including lead. Lead scandium niobate was synthesized by heat treating the solid oxide, and the conductance, susceptance and capacitance were measured as a function of temperature and frequency from the temperature dependence of the RLC circuit. The relaxation characteristics of lead scandium niobate were found to be affected by contributions such as grain size, grain boundary characteristics, space charge, and dipole arrangement. As the temperature rises, the maximum admittance and susceptance increase in one direction, but the resonance frequency decreases below the transition temperature but increases after the phase transition.

Keywords

References

  1. J. W. Hyun, J. D. Byun, Y. J. Kim, G. B. Kim, K. A. Lee, Ferroelectric and Dielectric Properties of the Pb(Sc1/2Nb1/2) O3 Ceramic System, Journal of the Korean Physical Society, 57 (2010) 485-488.  https://doi.org/10.3938/jkps.57.485
  2. J. L. Tang, M. K. Zhu, Y. D. Hou, H. Wang, H. Yan, Effect of pH value on phase structure, component, and grain morphology of Pb(Sc1/2Nb1/2)O3 powders by precipitation method, Journal of Crystal Growth, 307 (2007) 70-75.  https://doi.org/10.1016/j.jcrysgro.2007.06.002
  3. F. Chu, I. M. Reaney, N. Setter, Spontaneous (zero-field) relaxor to ferroelectric phase ransition in disordered Pb(Sc1/2Nb1/2)O3, Journal of Applied Physics, 77 (1995) 1671-1676.  https://doi.org/10.1063/1.358856
  4. A. A. Bokov, Z. G. Ye, Dielectric relaxation in relaxor ferroelectrics, Journal of Advanced Dielectrics, 2 (2012) 1-24. 
  5. C. Zhao, C. Z. Zhao, M. Werner, S. Taylor, P. Chalker, Dielectric relaxation of high-k oxides, Nanoscale Research Letters, 8 (2013) 456-474.  https://doi.org/10.1186/1556-276X-8-456
  6. J. W. Hyun, J. D. Byun, Y. J. Kim, Raman and dielectric spectroscopy in the disordered Pb(Sc1/2Nb1/2)O3 relaxor fabricated by one-step mixed oxide method, Journal of the Korean Physical Society, 66 (2015) 1057-1061.  https://doi.org/10.3938/jkps.66.1057
  7. A. Chen, J. F. Scott, Y. Zhi, H. Ledbetter, J. L. Baptista, Dielectric and ultrasonic anomalies at 22K, 37K and 65K in SrTiO3, Physical Review B, 59 (1999) 6661-6668.  https://doi.org/10.1103/PhysRevB.59.6661
  8. J. M. Kiat, C. Bogicevic, F. Karolak, G. Dezanneau, N. Guiblin, W. Ren, L. Bellaiche, R. Haumont, Low-symmetry phases and loss of relaxation in nanosized lead scandium niobate, Physical Review B, 81 (2010) 144122. 
  9. R. Padhee, P. R. Das, B. N. Parida, R. N. P. Choudhary, Impedance analysis of K2Pb2X2W2Ti4Nb2O30 (X=Nd, Y) tungsten bronze ceramics, Journal of the Korean Physical Society, 64 (2014) 1022-1030.  https://doi.org/10.3938/jkps.64.1022
  10. X. Li, X. Fan, Z. Xi, P. Liu, W. Long, P. Fang, F. Guo, R. Nan, Dielectric relaxor and conductivity mechanism in Fe-substituted PMN-32PT ferroelectric crystal, Crystals, 9(5) (2019) 241-247.  https://doi.org/10.3390/cryst9050241
  11. R. Das, R.N.P. Choudhary, Solid State Sciences, Studies of structural, dielectric relaxor and electrical characteristics of lead-free double Perovskite:Gd2NiMnO6, Solid State Sciences, 87 (2019) 1-8.  https://doi.org/10.1016/j.solidstatesciences.2018.10.020
  12. Z. Raddaoui, S. E. Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, Study of diffuse phase transition and relaxor ferroelectric behavior of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramic, RSC Advances, 9 (2019) 2412-2425.  https://doi.org/10.1039/C8RA08910H
  13. W. Dong, B.X. Wang, Y. Yuan, H. Wu, A. A. Bokov, Z.G. Ye, Synthesis, structural evolution, and dielectric properties of a new perovskite solid solution (Pb0.5Sr0.5) (Zr0.5Ti0.5)O3-PbTiO3, Journal of the American Ceramic Society, 105 (2022) 4775-4783.  https://doi.org/10.1111/jace.18449
  14. C. J. Chang, X. Qi, Dielectric relaxation and high recoverable energy density in (1-x)(0.3BiFeO3-0.7SrTiO3)-xK0.5Na0.5NbO3 ceramics, Ceramics International, 48 (2022) 25610-25620.  https://doi.org/10.1016/j.ceramint.2022.05.240
  15. S. Singh, A. Kaur, P. Kaur and L. Singh, High-temperature dielectric relaxation and electric conduction mechanisms in a LaCoO3-modified Na0.5Bi0.5TiO3 system, ACS Omega, 8 (2023) 25623-25638.