• Title/Summary/Keyword: Maximum overshoot

Search Result 82, Processing Time 0.027 seconds

Optimum Tuning of a Modified IMC-PID Controller Considering Model Uncertainty (모델 불확실성을 고려한 변형된 IMC-PID 제어기의 최적 동조)

  • Kim, Chang-Hyun;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.348-351
    • /
    • 2006
  • This paper proposes a modified IMC-PID controller that introduces controlling factor of the system identification to the standard IMC-PID controller in order to meet the design specifications such as gain, phase margin and maximum magnitude of sensitivity function in the frequency domain as well as the design specifications in time domain, settling, rising time and overshoot, and so on.

  • PDF

Transient Characteristic of a Metal-Oxide Semiconductor Field Effect Transistor in an Automotive Regulator in High Temperature Surroundings

  • Kang, Chae-Dong;Shin, Kye-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.178-181
    • /
    • 2010
  • An automotive IC voltage regulator which consists of one-chip based on a metal-oxide semiconductor field effect transistor (MOSFET) is investigated experimentally with three types of packaging. The closed type is filled with thermal silicone gel and covered with a plastic lid on the MOSFET. The half-closed type is covered with a plastic case but without thermal silicone gel on the MOSFET. Opened type is no lid without thermal silicone gel. In order to simulate the high temperature condition in engine bay, the operating circuit of the MOSFET is constructed and the surrounding temperature is maintained at $100^{\circ}C$. In the overshoot the maximum was mainly found at the half-closed packaging and the magnitude is dependent on the packaging type and the surrounding temperature. Also the impressed current decreased exponentially during the MOSFET operation.

Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System (오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계)

  • Byun, J.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.

An Auto-tuning of PID Controller using Fuzzy Performance Measure and Neural Network for Equipment System (전력설비시스템을 위한 퍼지 평가함수와 신경회로망을 사용한 PID제어기의 자동동조)

  • ;李壽欽
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.195-195
    • /
    • 1999
  • This paper is Proposed a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-control in various fields. First of all, in this method, 1st order delay system with dead time which is modelled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. So we can find the parameters of PID controller so as to minimize the fuzzy criterion function which includes the maximum overshoot, damping ratio, rising time and settling time. Finally, after studying the parameters of PID controller by Backpropagation of Neural-Network, when we give new K, L, T values to Neural-Network, the optimized parameter of PID controller is found by Neural-Network Program.

The Rebalance Loop Design with an Input Compensator for a Dynamically Tuned Gyroscope (직렬 공진형 콘버터의 새로운 제어방)

  • 정규범;이춘택;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.119-126
    • /
    • 1989
  • In this paper, a new technique, which uses an "input compensator", is proposed to design a controller for the rebalance loop of a Dynamically Tuned Gyroscope (DTG) and the performance of this new controller is compared with that of a Proportional and Integral (PI) controller through simulation. The rebalance loop is an essential part of a DTG` it is composed of a controller, low-pass filters, notch filters and torque drivers. Among them, the controller is the main attributor to determine the performance of the rebalance loop. Through simulation, it is concluded that the performance of the newly designed controller is better than that of a PI controller in the point of (1) low maximum overshoot, (2) short settling time and (3) small steady state error.

The Effects of Hot Water Supply Temperature on Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 공급온수온도가 실내 열환경에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • The Effects of hot water supply temperature on indoor thermal characteristics for floor radiant heating system in residential apartment were researched by computer simulation. The parametric study on hot water supply temperatures with different outdoor air temperatures was done with regard to energy performance and control characteristics, respectively. As a result, the maximum overshoot of indoor air temperature and energy consumption were reduced by adjusting the hot water supply temperatures with outdoor air temperatures.

Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential (전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어)

  • Cha, Hyunsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

Dynamic-Response-Free SMPS Using a New High-Resolution DPWM Generator Based on Switched-Capacitor Delay Technique (Switched-Capacitor 지연 기법의 새로운 고해상도 DPWM 발생기를 이용한 Dynamic-Response-Free SMPS)

  • Lim, Ji-Hoon;Park, Young-Kyun;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • In this paper, we suggest the dynamic-response-free SMPS using a new high-resolution DPWM generator based on switched-capacitor delay technique. In the proposed system, duty ratio of DPWM is controlled by voltage slope of an internal capacitor using switched-capacitor delay technique. In the proposed circuit, it is possible to track output voltage by controlling current of the internal capacitor of the DPWM generator through comparison between the feedback voltage and the reference voltage. Therefore the proposed circuit is not restricted by the dynamic-response characteristic which is a problem in the existing SMPS using the closed-loop control method. In addition, it has great advantage that ringing phenomenon due to overshoot/undershoot does not appear on output voltage. The proposed circuit can operate at switching frequencies of 1MHz~10MHz using internal operating frequency of 100 MHz. The maximum current of the core circuit is 2.7 mA and the total current of the entire circuit including output buffer is 15 mA at the switching frequency of 10 MHz. The proposed circuit has DPWM duty ratio resolution of 0.125 %. It can accommodate load current up to 1 A. The maximum ripple of output voltage is 8 mV. To verify operation of the proposed circuit, we carried out simulation with Dongbu Hitek BCD $0.35{\mu}m$ technology parameter.

A Study on Steady-State Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine (I) (중형항공기용 터보팬엔진의 정상상태 성능해석 및 동적모사에 관한 연구 (I))

  • 공창덕;고광웅;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.47-55
    • /
    • 1998
  • Steady-state and transient performance for the medium scale civil aircraft turbofan engine was analyzed. Steady-state performance was analyzed on maximum take-off condition, maximum climb condition, and cruise condition. At 90%RPM of the low pressure compressor, the partload performance was economized. The transient performance was analyzed with cases of the step increase, the ramp increase, the ramp decrease, and the step increase and ramp decrease for the input fuel flow. For the transient performance analysis, work matching between compressor and turbine was needed. Modified Euler method was used the integration of residual torque in work matching equation. At all flight condition, the overshoot of the high pressure turbine inlet temperature was appeared in the step and ramp increase case, and the surge of high pressure compressor was appeared in the step increase case and the ramp increase case within 5.5 seconds of maximum climb condition.

  • PDF

Automatic tune parameter for digital PID controller based on FPGA

  • Tipsuwanporn, V.;Jitnaknan, P.;Gulpanich, S.;Numsomran, A.;Runghimmawan, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1012-1015
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. The adjust parameter of PID to achieve best response of process which be using time and may be error if user are not expert. Nowadays this problem was solved by develop PID controller which can analysis and auto tune parameter are appropriate with process which used principle of Ziegler ? Nichols but it are expensive and designed for each task. Thus, this paper proposes auto tune PID based on FPGA by use principle of Dahlin which maximum overshoot not over 5 percentages and do not fine tuning again. It have performance in control process are neighboring controller in industrial and simple to use. Especially, It can use various process and low price. The auto tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. It was verified by control model of temperature control system.

  • PDF