• Title/Summary/Keyword: Maximum likelihood classifiers

Search Result 17, Processing Time 0.024 seconds

Color Image Analysis of Histological tissue Sections (해부병리조직에 대한 칼라 영상분석)

  • Choe, Heung-Guk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, we suggest a new direct method for mage segmentation using texture and color information combined through a multivariate linear discriminant algorithm. The color texture is computed in nin 3${\times}$3 masks obtained from each 3${\times}$3${\times}$3 spatio-spectral neighborhood in the image using the classical haralick and Pressman texture features. Among these 9${\times}$28 texture features the best set was extracted from a training set. The resulting set of 10 features were used to segment an image into four different regions. The resulting segmentation was Compared to classical color and texture segmentation methods using both box classifiers and maximum likelihood classification. It compared favourably on the test image from a Fastred-Lightgreen stained prostatic histological tissue section based on visual inspection. The classification accuracy of 97.5% for the new method obtained on the training data was also among the best of the tested methods. If these results hold for a larger set of images, this method should be a useful tool for segmenting images where both color and texture are relevant for the segmentation process.

  • PDF

A study of Landcover Classification Methods Using Airborne Digital Ortho Imagery in Stream Corridor (고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구)

  • Kim, Young-Jin;Cha, Su-Young;Cho, Yong-Hyeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • The information on the land cover along stream corridor is important for stream restoration and maintenance activities. This study aims to review the different classification methods for mapping the status of stream corridors in Seom River using airborne RGB and CIR digital ortho imagery with a ground pixel resolution of 0.2m. The maximum likelihood classification, minimum distance classification, parallelepiped classification, mahalanobis distance classification algorithms were performed with regard to the improvement methods, the skewed data for training classifiers and filtering technique. From these results follows that, in aerial image classification, Maximum likelihood classification gave results the highest classification accuracy and the CIR image showed comparatively high precision.

Analysis of Availability of High-resolution Satellite and UAV Multispectral Images for Forest Burn Severity Classification (산불 피해강도 분류를 위한 고해상도 위성 및 무인기 다중분광영상의 활용 가능성 분석)

  • Shin, Jung-Il;Seo, Won-Woo;Kim, Taejung;Woo, Choong-Shik;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1095-1106
    • /
    • 2019
  • Damage of forest fire should be investigated quickly and accurately for recovery, compensation and prevention of secondary disaster. Using remotely sensed data, burn severity is investigated based on the difference of reflectance or spectral indices before and after forest fire. Recently, the use of high resolution satellite and UAV imagery is increasing, but it is not easy to obtain an image before forest fire that cannot be predicted where and when. This study tried to analyze availability of high-resolution images and supervised classifiers on the burn severity classification. Two supervised classifiers were applied to the KOMPSAT-3A image and the UAV multispectral image acquired after the forest fire. The maximum likelihood (MLH) classifier use absolute value of spectral reflectance and the spectral angle mapper (SAM) classifier use pattern of spectra. As a result, in terms of spatial resolution, the classification accuracy of the UAV image was higher than that of the satellite image. However, both images shown very high classification accuracy, which means that they can be used for classification of burn severity. In terms of the classifier, the maximum likelihood method showed higher classification accuracy than the spectral angle mapper because some classes have similar spectral pattern although they have different absolute reflectance. Therefore, burn severity can be classified using the high resolution multispectral images after the fire, but an appropriate classifier should be selected to get high accuracy.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Supervised Classification Systems for High Resolution Satellite Images (고해상도 위성영상을 위한 감독분류 시스템)

  • 전영준;김진일
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.301-310
    • /
    • 2003
  • In this paper, we design and Implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the m()st effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.

Land Cover Classification of Image Data Using Artificial Neural Networks (인공신경망 모형을 이용한 영상자료의 토지피복분류)

  • Kang, Moon-Seong;Park, Seung-Woo;Kwang, Sik-Yoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.1 s.30
    • /
    • pp.75-83
    • /
    • 2006
  • 본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.

A Control Method for designing Object Interactions in 3D Game (3차원 게임에서 객체들의 상호 작용을 디자인하기 위한 제어 기법)

  • 김기현;김상욱
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.322-331
    • /
    • 2003
  • As the complexity of a 3D game is increased by various factors of the game scenario, it has a problem for controlling the interrelation of the game objects. Therefore, a game system has a necessity of the coordination of the responses of the game objects. Also, it is necessary to control the behaviors of animations of the game objects in terms of the game scenario. To produce realistic game simulations, a system has to include a structure for designing the interactions among the game objects. This paper presents a method that designs the dynamic control mechanism for the interaction of the game objects in the game scenario. For the method, we suggest a game agent system as a framework that is based on intelligent agents who can make decisions using specific rules. Game agent systems are used in order to manage environment data, to simulate the game objects, to control interactions among game objects, and to support visual authoring interface that ran define a various interrelations of the game objects. These techniques can process the autonomy level of the game objects and the associated collision avoidance method, etc. Also, it is possible to make the coherent decision-making ability of the game objects about a change of the scene. In this paper, the rule-based behavior control was designed to guide the simulation of the game objects. The rules are pre-defined by the user using visual interface for designing their interaction. The Agent State Decision Network, which is composed of the visual elements, is able to pass the information and infers the current state of the game objects. All of such methods can monitor and check a variation of motion state between game objects in real time. Finally, we present a validation of the control method together with a simple case-study example. In this paper, we design and implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the most effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.