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l. Introduction

In recent decades, remote sensing has proved to be a
powerful technology for monitoring the earth’s surface and
atmosphere at a global, regional, and even local scale. This
has been made possible by the large amount of data acqui-
red by different types of sensors. Digital processing of remo-
tely sensed imagery, such as Landsat, offers many advant-
ages over traditional photo-interpretation mapping (Mas, 2004).
The Landsat data have clear practical advantages over the
spectrally comparable SPOT imagery, including lower costs
(Hyyppa et al., 2000). In comparison to hyperspectral or hy-
perspatial resolution sensors, Landsat data are less expen-
sive, have lower storage requirements, higher spatial coverage
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.and are relatively easy to process due to the substantial

body of published literature concerning Landsat image pro-
cessing methods (Ingram et al, 2005).

The constitution of the optimum data space is a com-
mon problem in connection with classification. In order to
construct realistic classifiers, features that are sufficiently
representative of the physical process must be included in
the search (Kumaz et al., 2005). Different classification algo-
rithms produce different results, even using the same train-
ing sets (Liu et al., 2002). For some application fields, neu-
ral network classifiers (NNC) yield better results, while for
other applications a statistical classifier, such as the maxi-
mum likelihood classifier (MLC), performs better (Kanello-
poulos et al., 1993, Liu et al., 2002).

It has been shown that no image classifier is perfect.
However, classifiers may also be assumed to have comple-
mentary capabilities (Matsuyama, 1987, Liu et al, 2002).
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Therefore, a useful and practical approach for classification
performance is required in order to increase classification
aécuracy.

The statistical analyses used for understanding the relation-
ships among spectral data and land cover attributes should
allow for the possibility that these relationships may be non-
linear and complex. Regression and correlation analyses have
commonly been used within remote sensing studies. How-
ever, these approaches typically assume linear relationships
among variables of interest, while plant biophysical charac-
teristics often do not conform to these criteria (Jensen et
al., 1999). For this reason, nonparametric statistical methods
may be more useful for describing the relationship between
remotely sensed imagery and environmental variables, since
these tests make no priori assumptions about the data. The
MLC is a well-known parametric method. It is base on the
assumption that the data may be modeled by a set of
multivariate normal distributions (Gaussian). Typically artificial
neural networks (ANN) can be used in estimating various
fields without making assumptions about the data. Many
authors have reported better accuracy when classifying spec-
tral images using an ANN approach than with statistical
methods such as MLC (Paola and Showengerdt, 1995,
Atkinson and Tatnall, 1997, Mas, 2004). However, a more
important contribution of the ANN is their ability to
incorporate additional data into the classification process.

Attificial neural networks (ANN) are widely used for the
classification of remote sensing images (Berberoglu et al.,
2000, Jozwik et al., 1998, Bruzzone and Fernandez, 1999,
Giacinto et al., 2000, Serpico et al., 1996, Chen et al.,
1999, Villmann et al.,, 2003). Artificial neural networks (ANN)
are computational models that attempt to emulate the
capabilities of the human brain by mimicking its éimplest
and most obvious mechanisms. They are known as black-
box methods, since it is not known exactly how ANN learns
particular problems and apply the extracted rules to new
cases, or how conclusions can be drawn from the trained
networks (Gomez, 2002, Knag and Park, 2003, Gomez and
Kavzoglu, 2005, Kang et al, 2006a, Kang et al, 2006b).
ANN is capable of handling non-normality, non-linearity and
collinearity in a system (Haykin, 1994). This ability is a
major advantage of ANN for assessing the relationship bet-
ween land cover attributes and spectral reflectance values,
which are frequently non-linear and complex and in turn,

may vary across different wave bands.
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The remote sensing literature on back propagation neural
network applications to multispectral image classification is
relatively new, dating back only about ten years. These
studies have examined the classifier in more detail and com-
pared it to standard techniques, such as maximum likeli-
hood method. Few studies, however, have looked at the
finer details of the class decision regions and classifier-
produced probability estimation in order to fully understand
how and why the two algorithms perform differently on a
particular image. Although in early studies ANN was mostly
used to classify data, the method has also shown great
potential for predicting continuous variables (Uno et al.,
2005). ANN has recently been shown to provide useful
alternatives to traditional statistical analyses in various remote
sensing research. Successful applications have already been
reported for land cover classification (Jensen et al., 1999,
Foody et al., 2003, Ingram et al., 2005), surface water quality
assessment (Keiner and Yan, 1998; Gross et al., 1999, Zhang
et al., 2002), soil moisture estimation (Chang and Islam, 2000,
Del Frate et al., 2003), and yield prediction (Simpson,
1994; Liu et al.,, 2001, Drummond et al., 2003). However,
a more thorough investigation on the use of ANN in remote
sensing data analysis is necessary (Uno et al., 2005).

This paper describes the operation of one type of neural
network technique, back propagation, under the conditions
encountered in processing remote sensing data for the study
area. To allow for a comprehensive evaluation of the neural
network technique, it is compared to the maximum likeli-
hood classifier method and the results of an experimental

application are discussed.

Il. Theoretical Description

1. Maximum Likelihood Classifier

The maximum likelihood classifier quantitatively evaluates
both the variance and covariance of the category spectral
response patterns when classifying an unknown pixel. To
do this, an assumption is made that the distribution of the
cloud of points forming the category training data is
Gaussian (Lillesand and Kiefer, 1994). This assumption of
normality is generally reasonable for common spectral res-
ponse distributions. .Under this assumption, the distribution
of a category response pattern can be completely described

by the mean vector and the covariance matrix.
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In essence, the maximum likelihood classifier delineates
ellipsoidal “equiprobability contours” in the scatter diagram.
These decision regions are shown in Fig. 1. The shape of
the equiprobability contours expresses the sensitivity of the
liketihood classifier to covariance.

The principal drawback of maximum likelihood classi-
fication is the large number of computations required to
classify each pixel. This is particularly true when either a
large number of spectral channels are involved or a large
number of spectral classes must be differentiated. In such
cases, the maximum likelihood classifier is much slower
computationally than other classification techniques.

The maximum-likelihood classifier is a parametric classi-
fier that relies on the second-order statistics of a Gaussian
probability density function (pdf) for each class. It is often
used as a reference for classifier comparison because if the
class pdf’s are indeed Gaussian, it is the optimal classifier.

2. Arificial Neural Netwoks

Neural networks stem from research in artificial intelligence
as an attempt to mimic the workings of the brain using a
simplified model of nodes connected by neurons. Artificial
neural networks have been investigated by scientists in a
diverse range of disciplines, including computer science,
psychology, biology, organic chemistry and hydrology. Al-
though the motivation for these studies varies, the main idea,
computing using methods inspired by biological systems,

remains the same.

Equiprobability
contours

Band 3 digital number ——

Band 4 digital number >

Fig. 1. Equiprobability contours defined by a maximum
likelihood classifier (Lillesand and Kiefer, 1994).
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Error back propagation, which is also known as the
Generalized Delta Rule, is one of the most popular and
widely investigated methods for training neural networks.
The most common network topology is made up of multiple
layers with connections only between nodes in neighboring
layers. Many variants of neural network algorithms are derived
from a three layer back propagation neural network. For
multispectral image classification, the most widely used input/
output configuration is one input node for each input channel
and one output node for each desired class label. The
hidden layer is not determinate and few guidelines exist to
help the user. Every input and output node is connected to
all of the hidden layer nodes. Each interconnection has an
associated weight and as a whole contain the distributed,
learned information about the classes.

The network consists of layers of parallel processing ele-
ments, called neurons, with each layer being fully connected
to the preceeding layer by interconnection strengths, or weights,
W. The network consists of layers i, j, and &, with the
corresponding interconnection weights being W and W bet-
ween layers of neurons. Initially, estimated weight values
are progressively corrected during a training process that
compares predicted outputs to known outputs, and back-
propagates any errors to determine the appropriate weight
adjustments necessary to minimize the errors.

The total error TE, based on the squared difference between
predicted and actual outputs for pattern p, is computed as

1 n n 2
TE—EZZ(y,,k = Py) 0

p=1 k=l

where #n is the number of input-output patterns, m is the
number of output variables, y, is the target value of
output node & of pattern p, and py is the output value of
output node & of pattern p.

The pattern errors can be assumed to be a function of
the multidimensional weight space, visualized as a surface
of peaks and valleys. The valleys are the minima in pattern
errors that are located by a process called the gradient
descent method. At the beginning of the training process,
the location of the error surface will be near the peaks,
with movement to the minima being achieved by progre-

ssively correcting the interconnection weights by the amount:
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where AW is the change in the interconnection weight
between the arbitrary layers k and j of pattern p, 7 is a
proportionality constant (or a leaming constant), and 9E/ Wy
is the slope of the error surface.

The present study adopted a method whereby the weights
are adjusted by the leamning rate and the momentum term
as follows:

AW, (1 +1) =0 ch, + ahW, (1) )

where AWy (t+ 1) is the interconnection weight between
layers k and j, n is the leamning rate, S is the error of
layer k& on pattern p, h, is the output of the hidden layer
on pattern p, and o is the momentum constant.

The larger value of 7 correspond to larger changes in
the weight, allowing the desired weight to be found more
rapidly. However, if 7 is too large it may cause osciilations
(Phien and Sureerattanan, 2000). The momentum o is added
to the weight adjustment to avoid the formation of local

lll. Methodology

1. ANN classifier

First, all the digital numbers describing seven bands in
the image data were normalized into the theoretical range
of [0, 1]. As the sigmoid function is involved, all the data
were actually transformed into the range of {0.05, 0.095]
using the following equation (Kang et al, 2006a &
2006b):

:,x(X—Xmm) @

X1
I:(Xmax —Xmin)

1

X'=005+090%x| ——m——
(Xmax _Xmin)

}X(X_Xmin) (5)

where X' is the transformed variable, and X and Xuin
are its maximum and minimum digital numbers, respec-

tively.
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Using the trial and error method, the best combination

model was found to be:

O(i) = function |B(}))
fori=1to 5and j=11t 7 6)

Classifier :

where O(i) is the digital number in the output layer
(class) i, and B(j) is the digital number in the input layer
(band) ;.

As a direct consequence of Equation 4, the network
used in this study has seven input nodes. The number of
nodes in the hidden layer is the only factor that must be
determined, as the numbers of input and output nodes were
determined using neural network classifier model. The opti-
mal number of nodes in the hidden layer was found to be
eighteen nodes. The image data-used for training ANN and
testing the classification accuracy was selected from a section
(500x1000 pixels) of the Landsat-TM scene (Pathl16/Row34)
showing an area of the republic of Korea. The five
categories of landuse classified by ANN were forest, paddy,
upland, urban, and water bodies for use as input data for
hydrology and water quality models.

Aead input data (Raw image data)

Determine Min. & Max. DN value for each cell |

Normalize DN value, range (0, 1) I

[ Extract signature for each ca[eaoﬂ——-—

L Determine each node number for the hidden layers lf

Dfmu/ate & compute BIC, El, Total error l

No
BIC or Total srror < 0.001 Run ANN
model

Yes (EBPN)

Optimize node number of hidden /ayer

Determine connection weight values

i

Simulate overall test area & print final resuits

Evaluate classification accuracy

(Error matrix)

!

I Convert to image data format

]

( Return to Geodatabase )

Fig. 2. Flow chart of the ANN classifier for image data
analysis.
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Fig. 3. Architecture of the three-layer ANN classifier.

Fig. 2 shows the flow chart for the ANN classifier for
Landsat-TM image data analysis. The architecture of the
ANN model for land cover classification is shown in
Figure 3.

In this study, a more relaxed stopping rule for determin-
ing the efficient number of nodes in the hidden layer was
adopted for the Bayesian information criterion (BIC) (Hsu
et al., 1995, Phien and Sureerattanan, 2000, Kang et al.,
2006a) as follows:

BIC = MIn(MSE) + Pln M %)

|BIC(k +1) - BIC(k)| <0.001
| BIC(k) |~

&)

where BIC describes the Bayesian information criterion,
M is the number of data points, MSE is the mean squared
error, P is the number of parameters, and & is the number
of nodes in the hidden layer.

IV. Results and Discussion

1. Data and Training

The image data used for training and testing the classifi-
cation accuracy of the neural network were selected from a
section (500x1000 pixels) of Landsat-TM scene (Pathl16/
Row34) of an area in South Korea.

Table 1 and Table 2 indicate the resampling results and
characteristics for this area obtained from the Landsat-TM
data, respectively.

Table 1. Resampling results from the Landsat-TM data.
GCP

Scene Date Time Selected No. X Y
of GCP  residual residual

RMSE

Landsat-TM 0001106 012759 34

(Path 16/Row34) 0.1097 0.1099 0.1553

Table 2. Characteristics of the resampling area from the
Landsat-TM data.
Coordinate Min.  Max. Column: 500
X 185,000 200,000  Row: 1,000
A% 400,000 430,000 Resolution: 30 m

Ref. system : TM
Korea (Mid ref)

The use of the Bayesian Information Criterion (BIC) su-
ggested by Rissanen (1978) was proposed to determine the
best architecture for a back propagation neural network with
one hidden layer when the number of input nodes and
output nodes was determined based on “physical” criteria.
Fig. 4 illustrates the change in the total error with the
number of nodes in the hidden layer, and shows that the
least error occurred when the network had eighteen nodes.
1t should be noted that the best structure obtained for the
total error also corresponds to the highest value of the
efficiency index. In other words, the best structure also gives
the best performance. Fig. 5 shows the training results for

different numbers of nodes in the hidden layer.

2. Classification

The aim of this classification using a neural network
was to distinguish more accurately and effectively between
the five land cover categories for applying hydrologic and
water quality models: forest, paddy, upland, urban, and
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Fig. 5. Training results for different numbers of nodes in the hidden layer.

water. The resulting thematic map was compared with the
Gausian maximum likelihood classification.

The Gausian maximum likelihood classifier assumes a
normal distribution of the data (six bands). Fig. 6 illustrates

[Z7] Forest
Paddy
[ 1 upland
Urban
B water

10 Kilometers

(MLC)

the results of category classification using MLC and ANN
classifier. As the figure shows, the ANN classifier was
more successful for land cover classification compared to
the MLC method.

[] Forest
Paddy
[ upland
[ Urban
B Water

10 Kilometers

(ANN)

Fig. 6. Results of category classification using MLC and ANN classifier.
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Table 3. Error matrix for MLC results.
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Training data set (known cover types)

Item Forest Paddy Upland Urban Water Total User's accuracy Commission error
(%) (%)
Forest 380 3 0 128 511 74.4 25.6
Paddy 4 555 12 574 96.7 33
Classification Upland 34 47 80 53 214 374 62.6
data Urban 0 1 148 149 99.3 0.7
Water 0 0 0 199 199 100.0 0.0
Total 418 606 80 213 330 1,647 - -
Producer's accuracy (%) 90.9 91.6 100.0 69.5 60.3 - - -
Omission error (%) 9.1 8.4 0.0 30.5 39.7 - - -
Overall accuracy 82.7%

Table 4. Error matrix for ANN classifier results.

Training data set (known cover types)

Item Forest Paddy Upland Urban Water Total User's (oaAf )c Hracy Comm1§:/:;n error
Forest 428 49 17 1 16 511 83.8 16.2
Paddy 554 1 16 1 574 96.5 35
Classification Upland 13 156 41 0 214 729 27.1
Data Urban 4 145 0 149 973 2.7
Water 0 0 199 199 100.0 0.0
Total 443 607 178 203 216 1,647 - -
Producer's accuracy (%) 96.6 91.3 87.6 71.4 92.1 - - -
Omission error (%) 34 8.7 12.4 28.6 7.9 - - -
Overall accuracy 90.0%

Table 3 and Table 4 are the error matrices prepared by
an image analyst to determine how well a classification
has categorized a representative subset of pixels used in
the training process for the MLC and ANN classifier, res-
pectively. These matrices stem from classifying the sampled
training set pixels and listing the known cover types used
for training (columns) versus the pixels actually classified
into each land cover category by the two classifiers.

Note that in Table 3 and Table 4, the training set pixels
that are classified into the proper land cover categories are
located along the major diagonal of the error matrix (runn-
ing from upper left to lower right). All nondiagonal ele-
ments of the matrix represent errors of omission or com-
mission. Omission errors correspond to nondiagonal column
elements. Commission errors are represented by nondiagonal
row elements.

The error matrix indicates an overall accuracy of 83% in
Table 3 and 90% in Table 4, showing that the ANN classi-
fier produced more realistic and noise-free results obtained

using the maximum likelihood classifier method.

These tables show that paddy areas tended to be
classified as forest areas because the image shooting date
was the harvesting period. The reason that urban areas were
classified as upland areas is because some parts of urban
areas share a reflection characteristic with upland areas. As
a result, there were larger commission errors for upland and
urban areas in both the applied classifiers. In particular, the
commission error of 62.6% for upland areas in the MLC
method was the highest error value of all (Table 3). The
characteristics of upland and urban areas can thus easily be
mis-classified as forest or paddy areas, respectively, depen-
ding on the image shooting date.

V. Conclusions

In an effort to more accurately and effectively classify
land cover in remote sensing data, a new artificial neural

networks (ANN) model for land cover classification was
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developed. The proposed ANN classifier model is comprised
of neural network techniques, specifically back propagation,
are in applied under conditions normally encountered in
processing remote sensing data. The image data used for
training and testing of the classification accuracy of ANN
classifier and MLC were selected from a section (500x
1000 pixels) of Landsat-TM scene (Pathl16/Row34) of an
area in South Korea. This paper shows that the use of
neural networks for multispectral image classification gives
results comparable to those obtained using maximum likeli-
hood classifiers, with the error matrix indicating an overall
accuracy of 83% for MLC and 90% for the ANN classi-
fier. The ANN classifier thus produces more realistic and
noise-free results than those possible using the maximum
likelihood classifier method. ANN offers a promising new
way to improve the classification accuracy for remotely
sensed images. In this study, ancillary data were not used,
but additional improvement may be expected by incorpora-
ting information such as the texture or the shape and the
size of objects in the case of an object-oriented classification
procedure. Based on the results obtained from this study,
the ANN classifier shows promise as a feasible classifier

for large multispectral images.
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