• 제목/요약/키워드: Maximum efficiency

검색결과 4,321건 처리시간 0.039초

F-O-O-F 충돌형 injector의 분무특성 및 혼합성능에 관한 실험적 연구 (An Experimental Study on the Characteristics of Spray Pattern and the Mixing Performance of Unlike-impinging Split Triplet Injector(F-O-O-F))

  • 이광진;문덕용;김유
    • 한국추진공학회지
    • /
    • 제3권3호
    • /
    • pp.1-8
    • /
    • 1999
  • $H_2$O/Kerosene을 사용하여 Unlike 충돌형 인젝터(FOOF형)에서 산화제와 연료의 운동량비 변화에 따른 혼합효율을 측정하였다. 모의 추진제의 운동량비 1.5(총혼합비 1.89)에서 혼합성능은 최대 값을 나타내었으며 모의 추진제의 실험결과는 실제 추진제인 LOX/Kerosene에 적용하여 혼합특성속도 효율을 예측하였다 연구 결과 혼합특성속도 효율은 운동량비 2.0에서 최대 값을 나타내었다. 이러한 예측은 실제 연소실험을 통하여 얻어진 연소효율과 약간의 차이는 있으나 초기설계자료로서 충분한 가치가 있는 것으로 판단된다.

  • PDF

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

고효율 벡터제어 유도전동식 구동 시트템에 관한 연구 (A Study on High Efficiency Vector Controlled Induction Motor Drive System)

  • Kim, Heung-Geun
    • 대한전기학회논문지
    • /
    • 제39권11호
    • /
    • pp.1174-1182
    • /
    • 1990
  • A hgih efficiency and good dynamic performance drive system of an induction motor is presented in this paper using vector control technique. If the induction motor is driven under light loads with rated flux, the iron loss is excessively large compared with the copper loss, resulting in poor motor efficiency. High efficiency drive of an induction motor can be achieved by adjusting the flux level which leads the total motor loss to be a minimum value. Generally reducing the flux degrades the dynamic performance, but the dynamic performance of the proposed system is also maintained high. If the d-axis is coincident with rotor flux phasor in synchronous rotating reference frame, the stator current can be decoupled as flux component and torque component. At steady state, the developed motor torque is proportional to the product of the flux and torque component. The combination of the two components minimizing the motor loss could be found with numerical method. As the procedure to obtain the optimal combination is too hard, it is found experimentally. The system block diagram is suggested for maximum efficiency control. The proposed system is studied through digital simulation and verified with experiment. The experimental results show the possiblity of a high efficiency drive with good dynamic performance of maximum efficiency control.

  • PDF

저압 에어포그 시스템을 설치한 온실의 냉방효율 (Cooling Efficiency of Low Pressure Compressed Air Fogging System in Naturally Ventilated Greenhouses)

  • 남상운;김영식;성인모;고기혁
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.49-55
    • /
    • 2012
  • In order to derive the efficient utilization of low pressure compressed air fogging system, cooling efficiencies with control types were analyzed through cooling experiments in tomato greenhouses. The control types were set up with temperature control, humidity control, temperature and humidity control, and time control. It showed that the cooling effects were 0.7 to $3.3^{\circ}C$ on average and maximum of 4.3 to $7.0^{\circ}C$, the humidification effects were 3.5 to 13.5 % on average and maximum of 14.3 to 24.4 %. Both the cooling and humidification effect were the highest in the time control method. The cooling efficiency of the air fogging system was not high with 8.3 to 27.3 % on average. However, the cooling efficiency of 24.6 to 27.3 % which appears from the time control is similar to the cooling efficiency of high pressure fogging system experimented in Japan. The air fogging system is operated by low pressure, but its efficiency is similar to high pressure. We think because it uses compressed air. From this point of view, we suggest that the air fogging system can get the cooling efficiency of similar levels to that of high pressure fogging system and it will have an advantage from clogging problem of nozzle etc.

DDA를 이용한 하드웨어 보간기의 계산효율 향상에 관한 연구 (A study on the improvement of calculation efficiency for the two-axis hardware interpolator using DDA)

  • 오준호;최기봉
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.968-975
    • /
    • 1988
  • 본 연구에서는 직선보간과 원호보간에서 계산효율을 향상시킬 수 있는 방법을 제시하여 이 방법과 가감속 구간을 고려한 하드웨어 보간기를 설계 및 제작하였고, 이 것을 스텝 모터에 의해 구동되는 밀링머시인에 연결하여 보간기의 성능을 알아보았다.

일사량 급변 시 유용한 3-Point 태양광 인버터 MPPT 알고리즘 (3-Point MPPT Algorithm under Dynamic Irradiation for Photovoltaic PCS)

  • 김동균;박관남;조상윤;이영권;유권종;송승호;최익;최주엽
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.469-470
    • /
    • 2016
  • Since efficiency of maximum power point tracking (MPPT) is important for photovoltaic systems, a number of MPPT algorithms have already been researched for other environment, however, the most of MPPT algorithms can't track maximum point in dynamic irradiation. In this paper, P&O and 3-Point MPPT which is more specialized in dynamic irradiation are compared in basis of European Efficiency Test(EN50530). The efficiency of 3-Point MPPT algorithm is proved by simulation and experiment. In result, 3-Point MPPT shows higher efficiency in dynamic irradiation and less affected by environment than P&O.

  • PDF

Grit와 Air의 혼합비 최적화를 통한 블라스팅 효율 향상 (Improvement of the Blasting Productivity by Optimizing the Abrasive-to-Air Mixing Ratio)

  • 배한진;백재진;김을현;정몽규;신칠석;백광기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1436-1441
    • /
    • 2004
  • Achieving the maximum blasting efficiency with minimum abrasive consumption is a critical concern in surface preparation stage of shipbuilding and offshore industry. Increasing the abrasive flow rate beyond the optimum point results in a major reduction in productivity even though the amount of abrasive used is larger. So, this study is intend to find out the optimum abrasive-to-air mixing ratio which can make a significant improvement in blasting efficiency and remarkably reduce the amount of abrasive used. From the test results, it can be identified that as the abrasive feeding rate is increased linearly, blasting efficiency is increased to a maximum point and then gradually decreased in the form of a bell-shaped.

  • PDF

The mechanism of thrust generation by dynamic stall in flapping flight

  • Lee Jung Sang;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.291-293
    • /
    • 2003
  • This paper deals with a thrust generation of flapping-airfoil by dynamic stall. From many other previous research results, phase angle $ between pitching and plunging mode of flapping motion must be 90 deg. to satisfy maximum propulsive efficiency. In this case, leading edge vortex is relatively small. This phenomenon is related dynamic stall. So preventing leading edge vortex induced by dynamic stall guarantees maximum propulsive efficiency. But, in this paper we insist the leading edge vortex yields quite a positive influence on thrust generation and propulsive efficiency. In order to certify our opinion, pitching and plunging motions were calculated with the parameter of amplitude and frequency by using the unsteady, incompressible Navier-Stokes flow solver with a two-equation turbulence model. For more efficient computation, it is parallelized by MPI programming method.

  • PDF

U형 복사튜브 버너 연소특성 및 성능실험 (Combustion Characteristics and Performance of U type Radiation Tube Burner)

  • 이현찬;유현석;이중성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.710-714
    • /
    • 2000
  • Present study deals with combustion characteristics and performance of U type radiation tube burner which combustion capacity is 30,000kcal/he and the maximum capacity of supply fuel is $3.0N m^3/hr$. Temperature range of radiation tube is maximum $170^{\circ}C$ and minimum $150^{\circ}C$ and this displays relatively small temperature range. And thermal efficiency is satisfactory as $75{\sim}80%$. Also, radiative efficiency of radiation tube is $52{\sim}63%$.

  • PDF

익형의 형상최적화를 통한 고효율 축류송풍기 설계 (High-Efficiency Design of Axial Flow Fan through Shape Optimization of Airfoil)

  • 이기상;김광용;최재호
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.46-54
    • /
    • 2008
  • This study presents a numerical optimization to optimize an axial flow fan blade to increase the efficiency. The radial basis neural network is used as an optimization method with the numerical analysis by Reynolds-averaged Navier-Stokes equations using SST model as turbulence closure. Four design variables related to airfoil maximum camber, maximum camber location, leading edge radius and trailing edge radius, respectively, are selected, and efficiency is considered as objective function which is to be maximized. Thirty designs are evaluated to get the objective function values of each design used to train the neural network. Optimum shape shows the efficiency increased by 1.0%.