• Title/Summary/Keyword: Maximum drag reduction

Search Result 60, Processing Time 0.027 seconds

Drag reduction for payload fairing of satellite launch vehicle with aerospike in transonic and low supersonic speeds

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.371-385
    • /
    • 2020
  • A forward-facing aerospike attached to a payload fairing of a satellite launch vehicle significantly alters its flowfield and decreases the aerodynamic drag in transonic and low supersonic speeds. The present payload fairing is an axisymmetric configuration and consists of a blunt-nosed body along with a conical section, payload shroud, boat tail and followed by a booster. The main purpose of the present numerical simulations is to evaluate flowfield and assess the performance of aerodynamic drag coefficient with and without aerospike attached to a payload fairing of a typical satellite launch vehicle in freestream Mach number range 0.8 ≤ M ≤ 3.0 and freestream Reynolds number range 33.35 × 106/m ≤ Re ≤ 46.75 × 106/m whichincludes the maximum aerodynamic drag and maximum dynamic conditions during ascent flight trajectory of the satellite launch vehicle. A numerical simulation has been carried out to solve time-dependent compressible turbulent axisymmetric Reynolds-averaged Navier-Stokes equations. The closure of the system of equations is achieved using the Baldwin-Lomax turbulence model. The aerodynamic drag reduction mechanism is analysed employing numerical results such as velocity vector plots, density and Mach contours in conjunction with the experimental flow visualization pictures. The variations of wall pressure coefficient over the payload fairing with and without aerospike are exhibiting different kind of flowfield characteristics in the transonic and low supersonic speeds. The numerically computed results are compared with schlieren pictures, oil flow patterns and measured wall pressure distributions and exhibit good agreement between them.

Study on the Drag Reduction of 2-D Dimpled-Plates (딤플을 적용한 평판에 대한 항력 감소 연구)

  • Paik, Bu-Geun;Pyun, Young-Sik;Kim, Jun-Hyung;Kim, Kyung-Youl;Kim, Ki-Sup;Jung, Chul-Min;Kim, Chan-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.333-339
    • /
    • 2012
  • The main objective of the present study is to investigate the roles of the micro-dimpled surface on the drag reduction. To investigate the effectiveness of the micro-dimpled surface, the flat plates are prepared. The micro-size dimples are directly carved on the metal surface by ultrasonic nano-crystal surface modification (UNSM) method. Momentum of the main flow is increased by the dimple patterns within the turbulent boundary layer (TBL), however, there is no significant change in the turbulence intensity in the TBL. The influence of dimple patterns is examined through the flow field survey near the flat plate trailing edge in terms of the profile drag. The wake flow velocities in the flat plate are measured by PIV technique. The maximum drag reduction rate is 4.6% at the Reynolds number of $10^6{\sim}10^7$. The dimples tend to increase the drag reduction rate consistently even at high Reynolds number range.

Drag Reduction of a Circular Cylinder With O-rings (O-ring을 이용한 원주의 항력감소에 관한 실험적 연구)

  • Lim, Hee-Chang;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1174-1181
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167 D, 0.05D and 0.067 D with pitches of PPD=2D, 1D, 0.5D and 0.25D. The drag force, mean velocity and turbulence Intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of Re$_{D}$=7.8$\times$10$^3$~1.2$\times$10$^{5}$ . At Re$_{D}$=1.2$\times$10$^{5}$ , the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared that with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.der.

Wave Drag Reduction due to Repetitive Laser Pulses (반복 레이저 펄스를 이용한 초음속 비행체의 항력저감)

  • Kim, Jae-Hyung;Sasoh, Akihiro;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.381-384
    • /
    • 2011
  • Wave drag reduction due to the repetitive laser induced energy deposition over a flat-nosed cylinder is experimentally conducted in this study. Irradiated laser pulses are focused by a convex lens installed in side of the in-draft wind tunnel of Mach 1.94. The maximum frequency of the energy deposition is limited up to 80. Time-averaged drag force is measured using a low friction piston which was backed by a load cell in a cavity as a controlled pressure. Stagnation pressure history, which is measured at the nose of the model, is synchronized with corresponding sequential schlieren images. With cylinder model, amount of drag reduction is linearly increased with input laser power. The power gain only depends upon the pulse energy. A drag reduction about 21% which corresponds to power gain of energy deposition of approximately 10 was obtained.

  • PDF

An experimental assessment of resistance reduction and wake modification of a KVLCC model by using outer-layer vertical blades

  • An, Nam Hyun;Ryu, Sang Hoon;Chun, Ho Hwan;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.151-161
    • /
    • 2014
  • In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

The Characteristics of Two Phase Flow by Non-Newtonian Fluid for Vertical Up-ward in a Tube (수직 상향유동 배관에서 비뉴톤유체에 의한 2상류의 유동특성)

  • Cha K.O.;Kim J. G.;Che K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.53-59
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure drop, void fraction, and channel geometry. Drag reduction in the two phase flow can be applied to the transport of crude oil, phase change systems such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced and void fraction by Co-polymer(A611p) addition in the two phase flow system. We find that the maximum point position of local void friction moves from the wall of the pipe to the center of the pipe when polymer concentration increases. Also we find that the polymer solution changes the characteristics of the two phase flow. And then we predict that it is closely related with the drag reduction.

  • PDF

Experimental Study on the Aerodynamic Characteristics of a Passenger Vehicle with Winglets (윙렛을 부착한 승용차의 공력특성에 관한 실험적 연구)

  • 임진혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.149-156
    • /
    • 1999
  • In this study, aerodynmaic characteristics of the notch-back and fast-backpassenger vehicle models(1/10~1/12 acale) attached with winglets were experimentally investigated in a low speed wind tunnel. For various positions(X/L). tilted angles($\beta$) of a winglet, the aerodynamic forces on the vehicle model and rear-surface pressures were measured at various flow speeds. Also a flow of model surface was visualized by tuft method. The experimental results showed that winglets effect aerodynamic characteristics of vehicle models. A maximum of 3% reduction in lift coefficient was achieved with winglets at $\alpha$=-30$^{\circ}$. A maximum of 10% reduction in drag coefficient was achieved for a model with winglets and a rear-spoiler.

  • PDF

Does the Sailfish Skin Reduce the Skin Friction Like the Shark Skin? (돛새치 피부는 상어 피부처럼 마찰저항을 줄일 수 있을까?)

  • SaGong, Woong;Kim, Chul-Kyu;Choi, Sang-Ho;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.101-104
    • /
    • 2008
  • The sailfish is the fastest sea animal, reaching its maximum speed of 110km/h. On its skin, a number of V-shaped protrusions pointing downstream exist. Thus, in the present study, the possibility of reducing the skin friction using its shape is investigated in a turbulent boundary layer. We perform a parametric study by varying the height and width of the protrusion, the spanwise and streamwise spacings between adjacent ones, and their overall distribution pattern, respectively. Each protrusion induces a pair of streamwsie vortices, producing low and high shear stresses at its center and side locations, respectively. These vortices also interact with those induced from adjacent protrusions. As a result, the drag is either increased or unchanged for all the cases considered. In some cases, the skin friction itself is reduced but total drag including the form drag on the protrusions is larger than that of a smooth surface. Since the shape of present protrusions is similar to that used by Sirovich and Karlsson [Nature 388, 753 (1997)] where V-shaped protrusions pointing upstream were considered, we perform another set of experiments following their study. However, we do not obtain any drag reduction even with random distribution of those V-shaped protrusion.

  • PDF

Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm (다목적 유전알고리즘을 이용한 익형의 전역최적설계)

  • Lee, Ju-Hee;Lee, Sang-Hwan;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.427-434
    • /
    • 2009
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The numerical simulations for five different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermoaerodynamic performance for five different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, volume and area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 %, and the value of maximum ratio of Nusselt number augmentation is 7.05% when the riblet angle is $60^{\circ}$. The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum volume and area goodness factors are obtained when the riblet angle is $60^{\circ}$.